已知復數(shù)z=a+bi(a,b∈R),則b≠0是復數(shù)z為純虛數(shù)的( )
A.充分而不必要條件
B.必要而不充分條件
C.充要條件
D.既不充分也不必要條件
【答案】分析:利用純虛數(shù)的概念,其實部為0,虛部不為0判斷.
解答:解:若b≠0,復數(shù)z不一定為純虛數(shù),若再有a=0,則復數(shù)z為純虛數(shù).
反之,復數(shù)z為純虛數(shù),則必有b≠0(a=0).
所以b≠0是復數(shù)z為純虛數(shù)的必要而不充分條件.
故選B.
點評:本題以復數(shù)的分類為內(nèi)容載體,考查了充要條件的判斷,是道基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z=a+bi(a、b∈R+)(I是虛數(shù)單位)是方程x2-4x+5=0的根.復數(shù)w=u+3i(u∈R)滿足|w-z|<2
5
,求u的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z=a+bi,滿足|z|=
5
,z2的實部為3,且z在復平面內(nèi)對應(yīng)的點位于第一象限.
(1)求z、
.
z
和z+2
.
z
;
(2)設(shè)z、
.
z
、z+2
.
z
在復平面內(nèi)對應(yīng)點分別為A、B、C,試判斷△ABC的形狀,并求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)Z=a+bi(a、b∈R),且滿足
a
1-i
+
b
1-2i
=
5
3+i
,則復數(shù)Z在復平面內(nèi)對應(yīng)的點位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z=a+bi(a,b為正實數(shù),i是虛數(shù)單位)是方程x2-4x+5=0的一個根,復數(shù)w=(z-ti)2(t∈R)對應(yīng)的點在第二象限,則實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)Z=a+bi滿足條件|Z|=Z,則已知復數(shù)Z為( 。
A、正實數(shù)B、0C、非負實數(shù)D、純虛數(shù)

查看答案和解析>>

同步練習冊答案