3.已知復(fù)數(shù)z=$\frac{3i+1}{1-i}$,則z的虛部是2.

分析 利用復(fù)數(shù)的運(yùn)算法則、虛部的定義即可得出.

解答 解:復(fù)數(shù)z=$\frac{3i+1}{1-i}$=$\frac{(3i+1)(1+i)}{(1-i)(1+i)}$=$\frac{-2+4i}{2}$=-1+2i,則z的虛部為2.
故答案為:2.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、虛部的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.給出兩個(gè)命題:p:|x|=x的充要條件是x為正實(shí)數(shù),q:不等式|x-y|≤|x|+|y|取等號(hào)的條件是xy<0,則下列命題是真命題的是(  )
A.p∧qB.p∨qC.(¬p)∧qD.(¬p)∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知點(diǎn)M,N是拋物線y=4x2上不同的兩點(diǎn),F(xiàn)為拋物線的焦點(diǎn),且滿足$∠MFN=\frac{2π}{3}$,弦MN的中點(diǎn)P到直線l:$y=-\frac{1}{16}$的距離記為d,若|MN|2=λ•d2,則λ的最小值為( 。
A.3B.$\sqrt{3}$C.$1+\sqrt{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=ex-mx2-2x
(1)若m=0,討論f(x)的單調(diào)性;
(2)若x∈[0,+∞)時(shí),f(x)>$\frac{e}{2}$-1恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若函數(shù)f(x)=$\frac{4x}{{x}^{2}+1}$在區(qū)間(m,2m+1)上是單調(diào)遞增函數(shù),則實(shí)數(shù)m的取值范圍為( 。
A.(-1,0]B.(-1,0)C.[0,1]D.(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.5個(gè)人分4張無(wú)座足球票,每人至多分一張,而且票必須分完,那么不同分發(fā)總數(shù)是(  )
A.5B.10C.20D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知cos(α-$\frac{π}{4}$)=$\frac{\sqrt{2}}{4}$,則sin2α等于(  )
A.$\frac{\sqrt{2}}{4}$B.-$\frac{\sqrt{2}}{4}$C.$\frac{3}{4}$D.-$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.下列說(shuō)法不正確的是( 。
A.對(duì)于線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,直線必經(jīng)過(guò)點(diǎn) $({\overline x,\overline y})$;
B.莖葉圖的優(yōu)點(diǎn)在于它可以保存原始數(shù)據(jù),并且可以隨時(shí)記錄;
C.用秦九韶算法求多項(xiàng)式f(x)=3x5-2x3+6x2+x+1=2時(shí)的值時(shí),v2=14;
D.將一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知隨機(jī)變量X服從正態(tài)分布N(2,σ2),且P(0≤X≤2)=0.3,則P(X>4)=0.2.

查看答案和解析>>

同步練習(xí)冊(cè)答案