已知函數(shù)的圖象與直線相切于點(diǎn).
(1)求實(shí)數(shù)的值; (2)求的極值.

(1),;(2),.

解析試題分析:(1)將切點(diǎn)坐標(biāo)代入函數(shù)得一等式,函數(shù)在某點(diǎn)處的導(dǎo)數(shù)即為該點(diǎn)處切線的斜率,由這兩個(gè)等式可求得a、b的值. (2)將(1)所求得的a、b的值代入得,通過求導(dǎo),即得其極值.
試題解析:(1)由求導(dǎo)得:
               2分
據(jù)條件有
               5分
解之得,              6分
(2)據(jù)(1)知,所以
           7分
所以在區(qū)間、內(nèi)是增函數(shù),在區(qū)間上是減函數(shù)   9分 故        11分
            12分
考點(diǎn):導(dǎo)數(shù)的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若在區(qū)間上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),),
(Ⅰ)證明:當(dāng)時(shí),對(duì)于任意不相等的兩個(gè)正實(shí)數(shù),均有成立;
(Ⅱ)記,
(ⅰ)若上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(ⅱ)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若,設(shè)是函數(shù)的兩個(gè)極值點(diǎn),且,記分別為的極大值和極小值,令,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知兩點(diǎn)、,點(diǎn)為坐標(biāo)平面內(nèi)的動(dòng)點(diǎn),滿足.
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)若點(diǎn)是動(dòng)點(diǎn)的軌跡上的一點(diǎn),軸上的一動(dòng)點(diǎn),試討論直線與圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

計(jì)算下列定積分.
(1)                       (2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),
(1)當(dāng)時(shí),函數(shù)取得極值,求的值;
(2)當(dāng)時(shí),求函數(shù)在區(qū)間[1,2]上的最大值;
(3)當(dāng)時(shí),關(guān)于的方程有唯一實(shí)數(shù)解,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)。
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若,證明當(dāng)時(shí),函數(shù)的圖象恒在函數(shù)圖象的上方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(Ⅰ)若函數(shù)存在極值點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)時(shí),令(),()為曲線上的兩動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),能否使得是以O(shè)為直角頂點(diǎn)的直角三角形,且斜邊中點(diǎn)在y軸上?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案