5.在用反證法證明命題“過(guò)一點(diǎn)只有一條直線與已知平面垂直”時(shí),應(yīng)假設(shè)( 。
A.過(guò)兩點(diǎn)有一條直線與已知平面垂直
B.過(guò)一點(diǎn)有一條直線與已知平面平行
C.過(guò)一點(diǎn)有兩條直線與已知平面垂直
D.過(guò)一點(diǎn)有一條直線與已知平面不垂直

分析 假設(shè)的結(jié)論為原結(jié)論的否定.

解答 解:命題“過(guò)一點(diǎn)只有一條直線與已知平面垂直”的否定為:過(guò)一點(diǎn)至少有兩條直線與已知平面垂直,
故選C.

點(diǎn)評(píng) 本題考查了反證法證明,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若直線l1:2x-ay-1=0過(guò)點(diǎn)(2,1),l2:x+2y=0,則直線l1和l2( 。
A.平行B.相交但不垂直C.垂直D.相交于點(diǎn)(2,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知鈍角△ABC中,三條邊長(zhǎng)為連續(xù)正整數(shù).
(1)求最大角的余弦值;
(2)求以此最大角為內(nèi)角,夾此角兩邊之和為4的平行四邊形的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=alnx+$\frac{1}{x-1}$(a為常數(shù))在($\frac{1}{4}$,$\frac{1}{2}$)內(nèi)有唯一的極值點(diǎn).
(1)求a的取值范圍.
(2)若x1∈(0,$\frac{1}{2}$),x2∈(2,+∞),試判斷f(x2)-f(x1)與$\frac{8}{9}$ln2+$\frac{2}{3}$的大小并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知數(shù)列{an}滿足an+1=3an+2(n∈N*),且a1=2.
(1)求證:數(shù)列{an+1}是等比數(shù)列;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.某產(chǎn)品的銷售收入y1(萬(wàn)元)是產(chǎn)量x(千臺(tái))的函數(shù):${y_1}=17{x^2}$(x>0),生產(chǎn)成本y2萬(wàn)元是產(chǎn)量x(千臺(tái))的函數(shù):${y_2}=2{x^3}-{x^2}$(x>0),為使利潤(rùn)最大,應(yīng)生產(chǎn)( 。
A.9千臺(tái)B.8千臺(tái)C.7千臺(tái)D.6千臺(tái)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知點(diǎn)A(0,1),B(3,2),向量$\overrightarrow{CA}=(4,3)$,則向量$\overrightarrow{BC}$=( 。
A.(-7,-4)B.(7,4)C.(-1,4)D.(1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若角520°的始邊為x軸非負(fù)半軸,則它的終邊落在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若曲線y=2x-x3在點(diǎn)P處的切線的斜率是-1,則P的橫坐標(biāo)為±1.

查看答案和解析>>

同步練習(xí)冊(cè)答案