19.已知-1≤a≤1,-1≤b≤1,則函數(shù)y=lg(x2+2ax+b)的定義域?yàn)槿w實(shí)數(shù)R的概率為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

分析 本題是幾何概型的概率,由于有兩個變量,利用變量對應(yīng)的區(qū)域面積比求概率即可.

解答 解:由題意,a,b滿足的區(qū)域?yàn)檫呴L是2的正方形,面積為4,而滿足函數(shù)y=lg(x2+2ax+b)的定義域?yàn)槿w實(shí)數(shù)R的a,b范圍是使x2+2ax+b取得所有正數(shù),所以△=4a2-4b≥0即b≤a2,在正方形內(nèi)滿足此范圍的圖形如圖,面積為$2{∫}_{0}^{1}{(1-x}^{{\;}^{2}})dx$=$\frac{4}{3}$,
所以由幾何概型的公式得到所求概率為$\frac{\frac{4}{3}}{4}=\frac{1}{3}$;
故選A.

點(diǎn)評 本題考查了幾何概型的概率求法;滲透了對數(shù)函數(shù)的定義域以及定積分的知識;比較綜合.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=sin($\frac{π}{2}$+x)cosx-sinxcos(3π-x).
(1)求函數(shù)f(x)的最小正周期;
(2)在△ABC中,已知A為銳角,f(A)=1,BC=2,B=$\frac{π}{6}$,求AC邊的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=loga(x+1)-loga(1-x),a>0且a≠1.
(1)判斷f(x)的奇偶性并予以證明;
(2)當(dāng)a>1時,求使f(x)>0的x的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果是( 。
A.-2B.$-\frac{1}{3}$C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知有限集A={a1,a2,a3,…,an}(n≥2,n∈N).如果A中元素ai(i=1,2,3,…n)滿足a1a2…an=a1+a2+…+an,就稱A為“創(chuàng)新集”,給出下列結(jié)論:
①集合$\left\{{\left.{3+\sqrt{3},3-\sqrt{3}}\right\}}$是“創(chuàng)新集”;
②若集合{2,a2}是“創(chuàng)新集”,則a=$\sqrt{2}$;
③若a1,a2∈R,且{a1,a2}是“創(chuàng)新集”,則a1a2>4;
④若a1,a2∈N*“創(chuàng)新集”A有且只有一個,且n=3.
其中正確的結(jié)論是①③④.(填上你認(rèn)為所有正確的結(jié)論序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若tan2α=-$\frac{{3\sqrt{7}}}{7}$,α∈(-$\frac{π}{4}$,$\frac{π}{4}}$),則sinα+cosα等于( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{{\sqrt{5}}}{2}$D.$\frac{{\sqrt{7}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知△ABC中,AB=4,且滿足BC=$\sqrt{3}$CA,則△ABC的面積的最大值為( 。
A.$\sqrt{2}$B.3C.2D.4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列函數(shù)中,在區(qū)間(0,+∞)上單調(diào)遞增的是( 。
A.y=-x2B.y=${log}_{\frac{1}{2}}$xC.y=($\frac{1}{2}$)xD.y=x-$\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.執(zhí)行如圖所示的程序框圖,若輸入的n的值為5,則輸出的S的值為(  )
A.17B.36C.52D.72

查看答案和解析>>

同步練習(xí)冊答案