(2010•宜春模擬)對任意x∈R,函數(shù)f(x)的導數(shù)存在,若f′(x)>f(x)且 a>0,則以下正確的是( 。
分析:由f′(x)>f(x)可得f'(x)-f(x)>0,而由e-x[f′(x)-f(x)]>0可判斷函數(shù)e-xf(x)是單調(diào)遞增函數(shù),結(jié)合a>0可求
解答:解:∵f′(x)>f(x)
∴f′(x)-f(x)>0
∵e-x>0
∴e-x[f′(x)-f(x)]>0
∴e-xf′(x)-e-xf(x)>0
而[e-xf(x)]′=(e-x)′f(x)+e-xf′(x)=-e-xf(x)+e-xf′(x)>0
∴e-xf(x)是單調(diào)遞增函數(shù)
∵a>0
于是e-af(a)>e-0f(0)=f(0)
∴f(a)>eaf(0)
故選A
點評:本題主要考查了導數(shù)的基本運算及利用導數(shù)判斷函數(shù)的單調(diào)性,這里的關(guān)鍵,是觀察和利用e-xf(x)的導函數(shù)的形式,這個需要多做些題目來建立經(jīng)驗.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2010•宜春模擬)已知線段CD=2
3
,CD的中點為O,動點A滿足AC+AD=2a(a為正常數(shù)).
(1)建立適當?shù)闹苯亲鴺讼担髣狱cA所在的曲線方程;
(2)若a=2,動點B滿足BC+BD=4,且OA⊥OB,試求△AOB面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•宜春模擬)已知函數(shù)f(x)=logax(a>0且a≠1)滿足f(
2
a
)>f(
3
a
)
,則f(1-
1
x
)>0
的解是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•宜春模擬)25人排成5×5方陣,從中選出3人,要求其中任意2人既不同行也不同列,則不同的選法為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•宜春模擬)已知點P是雙曲線
x2
8
-
y2
4
=1
上的動點,F(xiàn)1,F(xiàn)2分別是其左、右焦點,O為坐標原點,則
|PF1|+|PF2|
|OP|
的取值范圍( 。

查看答案和解析>>

同步練習冊答案