(本題滿分12分)
已知數(shù)列的前項(xiàng)和為,().
(Ⅰ)證明數(shù)列是等比數(shù)列,求出數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和;
(Ⅲ)數(shù)列中是否存在三項(xiàng),它們可以構(gòu)成等差數(shù)列?若存在,求出一組符合條件的項(xiàng);若不存在,說明理由.
(Ⅰ)見解析,.
(Ⅱ).
(Ⅲ)不存在滿足條件的三項(xiàng).
【解析】本題主要考查了數(shù)列的遞推式的應(yīng)用,數(shù)列的通項(xiàng)公式和數(shù)列的求和問題.應(yīng)熟練掌握一些常用的數(shù)列的求和方法如公式法,錯(cuò)位相減法,疊加法等.
(1)把Sn和Sn+1相減整理求得an+1=2an+3,整理出3+an+1=2(3+an),判斷出數(shù)列{3+an}是首相為6,公比為2的等比數(shù)列,求得3+an,則an的表達(dá)式可得.
(2)把(I)中的an代入bn,求得其通項(xiàng)公式,進(jìn)而利用錯(cuò)位相減法求得數(shù)列的前n項(xiàng)的和.
(3)設(shè)存在滿足題意,那么等式兩邊的奇數(shù)和偶數(shù)來分析不存在。
解析:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012102514302234372241/SYS201210251431063750142273_DA.files/image003.png">,所以,
則,所以,,
所以數(shù)列是等比數(shù)列,
,,
所以.
(Ⅱ),
,
令,①
,②
①-②得,,
,
所以.
(Ⅲ)設(shè)存在,且,使得成等差數(shù)列,
則,
即,
即,,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012102514302234372241/SYS201210251431063750142273_DA.files/image024.png">為偶數(shù),為奇數(shù),
所以不成立,故不存在滿足條件的三項(xiàng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分12分)已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列,,
設(shè),數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分,第1小題6分,第2小題6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)
設(shè)函數(shù)(,為常數(shù)),且方程有兩個(gè)實(shí)根為.
(1)求的解析式;
(2)證明:曲線的圖像是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)
如圖所示,直二面角中,四邊形是邊長(zhǎng)為的正方形,,為上的點(diǎn),且⊥平面
(Ⅰ)求證:⊥平面
(Ⅱ)求二面角的大。
(Ⅲ)求點(diǎn)到平面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com