如圖,兩矩形ABCD,ABEF所在平面互相垂直,DE與平面ABCD及平面ABEF所成角分別為,M、N分別為DE與DB的中點,且MN=1.
(1) 求證:MN丄平面ABCD
(2) 求線段AB的長;
(3) 求二面角A—DE—B的平面角的正弦值.
(Ⅰ)證明:∵平面ABCD⊥平面ABEF,且平面ABCD平面ABEF=AB
EB⊥AB ∴EB⊥平面ABCD   又MN∥EB     
∴MN⊥面ABCD.                                             (3分)
(Ⅱ)由(Ⅰ)可知∠EDB為DE與平面ABCD所成的角   ∴∠EDB=30o
又在Rt△EBD中,EB=2MN=2,∠EBD=90o   ∴DE=
連結AE,可知∠DEA為DE與平面ABEF所成的角 ∴∠DEA=45o(5分)
在Rt△DAE中,∠DAE=90o   ∴AE=DE    cos∠DEA=2
在Rt△ABE中,.                 (7分)

(Ⅲ)方法一:過B作BO⊥AE于O點,過O作OH⊥DE于H,連BH
∵AD⊥平面ABEF    BO面ABEF
∴BO⊥平面ADE   ∴OH為BH在平面ADE內的射影
∴BH⊥DE  即∠BHO為所求二面角的平面角 (9分)
在Rt△ABE中,BO=
在Rt△DBE中,由BH·DE=DB·OE得BH=
∴sin∠BHO=
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,直角梯形ACDE與等腰直角△ABC所在平面互相垂直,F(xiàn)為BC的中點,,AE∥CD,DC=AC=2AE=2.
(Ⅰ)求證:平面BCD平面ABC
(Ⅱ)求證:AF∥平面BDE;
(Ⅲ)求四面體B-CDE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.(本小題滿分12分)
如圖5所示的多面體是由底面為的長方體被截面所截    
而得到的,其中
(1)求;
(2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

一個正方體的八個頂點都在同一個球面上,已知這個球的表面積是12π,那么這個正方體的體積是
A.B.C.8D.24

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

正方體木塊的表面上有一動點P由頂點A出發(fā)按下列規(guī)則向點移動:①點P只能沿正方體木塊的棱或表面對角線移動;②點P每一變化位置,都使P點到點的距離縮短,③若在面對角線上移動時,不能在中點處轉入另一條面對角線,動點P共有_______種不同的運行路線.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在長方體中,的中點.
(Ⅰ)求證:平面;
(Ⅱ)判斷并證明,點在棱上什么位置時,平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,、為圓柱的母線,是底面圓的直徑,、分別是、的中點,
(1)證明:;
(2)求四棱錐與圓柱的體積比;
(3)若,求與面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖是 一正方體的表面展開圖,B、N、Q都是所在棱的中點
則在原正方體中,①AB與CD相交;②MN∥PQ;③AB∥PE;④MN與CD異面;⑤MN∥平面PQC.所給關系判斷正確的是_____

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


(本小題滿分14分)
如圖所示,在長方體中,AB=AD=1,AA1=2,M是棱CC1的中點
(Ⅰ)求異面直線A1M和C1D1所成的角的正切值;

(Ⅱ)證明:平面ABM⊥平面A1B1M1

查看答案和解析>>

同步練習冊答案