上海市徐匯區(qū)2011屆高三下學期學習能力診斷卷(數(shù)學理).doc |
|
| (本題滿分16分)第(1)小題滿分4分,第(2)小題滿分6分,第(3)小題滿分6分。 定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的“特征三角形”。如果兩個橢圓的“特征三角形”是相似的,則稱這兩個橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比。已知橢圓。 若橢圓,判斷與是否相似?如果相似,求出與的相似比;如果不相似,請說明理由; 寫出與橢圓相似且短半軸長為的橢圓的方程;若在橢圓上存在兩點、關于直線對稱,求實數(shù)的取值范圍? 如圖:直線與兩個“相似橢圓”和分別交于點和點, 試在橢圓和橢圓上分別作出點和點(非橢圓頂點),使和組成以為相似比的兩個相似三角形,寫出具體作法。(不必證明)
解:(1)橢圓與相似。-------------------2分 因為橢圓的特征三角形是腰長為4,底邊長為的等腰三角形,而橢圓的特征三角形是腰長為2,底邊長為的等腰三角形,因此兩個等腰三角形相似,且相似比為---------------4分 (2)橢圓的方程為:-------------------6分 設,點,中點為, 則,所以 則 -------------------8分 因為中點在直線上,所以有,-------------------9分 即直線的方程為:, 由題意可知,直線與橢圓有兩個不同的交點, 即方程有兩個不同的實數(shù)解, 所以,即-------------------10分 (3)作法1:過原點作直線,交橢圓和橢圓于點和點,則和即為所求相似三角形,且相似比為。-------------------16分 作法2:過點A、點C分別做軸(或軸)的垂線,交橢圓和橢圓于點和點,則和即為所求相似三角形,且相似比為。-------------------16分
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:
題型:
上海市徐匯區(qū)2011屆高三下學期學習能力診斷卷(數(shù)學理).doc | | | (本題滿分14分)第(1)小題滿分6分,第(2)小題滿分8分。 如圖1,,是某地一個湖泊的兩條互相垂直的湖堤,線段和曲線段分別是湖泊中的一座棧橋和一條防波堤。為觀光旅游的需要,擬過棧橋上某點分別修建與,平行的棧橋、,且以、為邊建一個跨越水面的三角形觀光平臺。建立如圖2所示的直角坐標系,測得線段的方程是,曲線段的方程是,設點的坐標為,記。(題中所涉及的長度單位均為米,棧橋和防波堤都不計寬度) (1)求的取值范圍; (2)試寫出三角形觀光平臺面積關于的函數(shù)解析式,并求出該面積的最小值。
查看答案和解析>>
科目:高中數(shù)學
來源:
題型:
上海市徐匯區(qū)2011屆高三下學期學習能力診斷卷(數(shù)學理).doc | | | (本題滿分16分)第(1)小題滿分4分,第(2)小題滿分6分,第(3)小題滿分6分。 定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的“特征三角形”。如果兩個橢圓的“特征三角形”是相似的,則稱這兩個橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比。已知橢圓。 若橢圓,判斷與是否相似?如果相似,求出與的相似比;如果不相似,請說明理由; 寫出與橢圓相似且短半軸長為的橢圓的方程;若在橢圓上存在兩點、關于直線對稱,求實數(shù)的取值范圍? 如圖:直線與兩個“相似橢圓”和分別交于點和點, 試在橢圓和橢圓上分別作出點和點(非橢圓頂點),使和組成以為相似比的兩個相似三角形,寫出具體作法。(不必證明)
查看答案和解析>>
科目:高中數(shù)學
來源:
題型:
上海市徐匯區(qū)2011屆高三下學期學習能力診斷卷(數(shù)學理).doc | | | (本題滿分14分)第(1)小題滿分7分,第(2)小題滿分7分。 如圖,已知點在圓柱的底面圓上,為圓的直徑,圓柱的表面積為,,。 求異面直線與所成角的大小; (結果用反三角函數(shù)值表示) (2)求點到平面的距離。
查看答案和解析>>
科目:高中數(shù)學
來源:
題型:
上海市徐匯區(qū)2011屆高三下學期學習能力診斷卷(數(shù)學理).doc | | | (本題滿分18分)第(1)小題滿分6分,第(2)小題滿分6分,第(3)小題滿分6分。 設等比數(shù)列的首項為,公比為為正整數(shù)),且滿足是與的等差中項;數(shù)列滿足。 求數(shù)列的通項公式; 試確定實數(shù)的值,使得數(shù)列為等差數(shù)列; 當數(shù)列為等差數(shù)列時,對每個正整數(shù),在和之間插入個2,得到一個新數(shù)列。設是數(shù)列的前項和,試求滿足的所有正整數(shù)。
查看答案和解析>>
科目:高中數(shù)學
來源:
題型:
上海市徐匯區(qū)2011屆高三下學期學習能力診斷卷(數(shù)學理).doc | | | (本題滿分14分)第(1)小題滿分7分,第(2)小題滿分7分。 如圖,已知點在圓柱的底面圓上,為圓的直徑,圓柱的表面積為,,。 求異面直線與所成角的大小; (結果用反三角函數(shù)值表示) (2)求點到平面的距離。
查看答案和解析>>
| | | | | | | | | | | |