【題目】在數(shù)列{an}中,a1=1,a2= ,且an+1= (n≥2)
(1)求a3 , a4;
(2)猜想an的表達式,并加以證明.

【答案】
(1)解:由數(shù)列{an},a1=1,a2= ,且an+1= (n≥2).

令n=2,則a3= = = ;

令n=3,則 =


(2)解:由(1)可猜想

下面利用數(shù)學歸納法加以證明:

①當n=1,2,3,4時,由(1)和已知經驗證可知:結論成立;

②假設當n=k(k≥4)時,結論也成立,即 ;

那么當n=k+1時,由題設與歸納假設可知: = =

即當n=k+1時,結論也成立.

綜上,對n∈N*, 成立.


【解析】
【考點精析】解答此題的關鍵在于理解歸納推理的相關知識,掌握根據(jù)一類事物的部分對象具有某種性質,退出這類事物的所有對象都具有這種性質的推理,叫做歸納推理,以及對數(shù)學歸納法的定義的理解,了解數(shù)學歸納法是證明關于正整數(shù)n的命題的一種方法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線y2=4x,點M(1,0)關于y軸的對稱點為N,直線l過點M交拋物線于A,B兩點.
(1)證明:直線NA,NB的斜率互為相反數(shù);
(2)求△ANB面積的最小值;
(3)當點M的坐標為(m,0),(m>0且m≠1).根據(jù)(1)(2)推測:△ABC面積的最小值是多少?(不必說明理由)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ln(1+x)﹣ . (Ⅰ)若a=2,求f(x)在x=1處的切線方程;
(Ⅱ)若f(x)≥0對x∈(﹣1,+∞)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中正確的有 . (填上所有正確命題的序號) ①一質點在直線上以速度v=3t2﹣2t﹣1(m/s)運動,從時刻t=0(s)到t=3(s)時質點運動的路程為15(m);
②若x∈(0,π),則sinx<x;
③若f′(x0)=0,則函數(shù)y=f(x)在x=x0取得極值;
④已知函數(shù) ,則

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若,且,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中, , 平面, .

(1)設點的中點,求證: 平面;

(2)線段上是否存在一點,使得直線與平面所成的角的正弦值為?若存在,試確定點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知O點為坐標原點,且點A(1,0),B(0,1),C(2sinθ,cosθ)
(1)若 ,求tanθ的值;
(2)若 =1,求sinθcosθ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sinωx+λcosωx,其圖象的一個對稱中心到最近的一條對稱軸的距離為 ,且在x= 處取得最大值.
(1)求λ的值.
(2)設 在區(qū)間 上是增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,直線的傾斜角為且經過點,以原點為極點,以軸正半軸為極軸,與直角坐標系取相同的長度單位,建立極坐標系,設曲線的極坐標方程為.

1)若直線與曲線有公共點,求的取值范圍;

(2)設為曲線上任意一點,求的取值范圍.

查看答案和解析>>

同步練習冊答案