(本題滿分12分)在中,內(nèi)角對(duì)邊的邊長(zhǎng)分別是,已知,
,,求的面積.

解析試題分析:根據(jù)已知中sinB=2sinA,結(jié)合正弦定理得到b=2a,那么利用角C的余弦定理公式得到方程組,解得a,b的值。
解:由余弦定理得,
,由正弦定理得:
聯(lián)立方程組解得:,
所以的面積
考點(diǎn):本試題主要考查了已知三角形的邊角關(guān)系,求解三角形的面積的問題運(yùn)用。
點(diǎn)評(píng):解決該試題的關(guān)鍵是分析中角化為邊,然后利用余弦定理得到a,b的值,進(jìn)而結(jié)合正弦面積公式得到。如何下手分析,要通過已知中邊和角的情況來確定。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
如圖所示,在一個(gè)特定時(shí)段內(nèi),以點(diǎn)E為中心的10海里以內(nèi)海域被設(shè)為警戒水域.點(diǎn)E正北40海里處有一個(gè)雷達(dá)觀測(cè)站A,某時(shí)刻測(cè)得一艘勻速直線行駛的船只位于點(diǎn)A北偏東30°且與點(diǎn)A相距100海里的位置B,經(jīng)過2小時(shí)又測(cè)得該船已行駛到點(diǎn)A北偏東60°且與點(diǎn)A相距20海里的位置C.
(1)求該船的行駛速度(單位:海里/小時(shí));
(2)若該船不改變航行方向繼續(xù)行駛.判斷它是否會(huì)進(jìn)入警戒水域,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)在中,角所對(duì)的邊為已知
(1)求值;(2)若面積為,且,求值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)在△ABC中,是A,B,C所對(duì)的邊,S是該三角形的面積,且 
(1)求∠B的大;
(2)若=4,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分13分) 如圖,某觀測(cè)站在城的南偏西的方向上,由城出發(fā)有一公路,走向是南偏東,在處測(cè)得距為31公里的公路上處,有一人正沿公路向城走去,走了20公里后,到達(dá)處,此時(shí)、間距離為公里,問此人還需要走多少公里到達(dá)城.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12分)某城市有一塊不規(guī)則的綠地如圖所示,城建部門欲在該地上建造一個(gè)底座為三角形的環(huán)境標(biāo)志,小李、小王設(shè)計(jì)的底座形狀分別為△ABC、△ABD,經(jīng)測(cè)量AD=BD=14,BC=10,AC=16,∠C=∠D.

(I)求AB的長(zhǎng)度;
(Ⅱ)若建造環(huán)境標(biāo)志的費(fèi)用與用地面積成正比,不考慮其他因素,小李、小王誰的設(shè)計(jì)使建造費(fèi)用最低,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題共12分)已知函數(shù).
(Ⅰ)求的最小正周期;
(Ⅱ)求在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(8分)在中, 所對(duì)的邊分別為,已知.   
(1)求的大。 (4分)     
(2)求的面積.(4分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題12分)一緝私艇發(fā)現(xiàn)在方位角45°方向,距離12海里的海面上有一走私船正以10海里/小時(shí)的速度沿方位角為105°方向逃竄,若緝私艇的速度為14海里/小時(shí),緝私艇沿方位角45°+α的方向追去,若要在最短的時(shí)間內(nèi)追上該走私船,求追擊所需時(shí)間和α角的正弦.(注:方位角是指正北方向按順時(shí)針方向旋轉(zhuǎn)形成的角,設(shè)緝私艇與走私船原來的位置分別為A、C,在B處兩船相遇).

查看答案和解析>>

同步練習(xí)冊(cè)答案