已知等差數(shù)列{an}的前n項和為Sn,n∈N*,且滿足a2+a4=14,S7=70.
(1)求數(shù)列{an}的通項公式;
(2)若bn=,則數(shù)列{bn}的最小項是第幾項,并求該項的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
從數(shù)列中抽出一些項,依原來的順序組成的新數(shù)列叫數(shù)列的一個子列.
(1)寫出數(shù)列的一個是等比數(shù)列的子列;
(2)設(shè)是無窮等比數(shù)列,首項,公比為.求證:當(dāng)時,數(shù)列不存在
是無窮等差數(shù)列的子列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列是公差不為0的等差數(shù)列,a1=2且a2,a3,a4+1成等比數(shù)列。
(1)求數(shù)列的通項公式;
(2)設(shè),求數(shù)列的前項和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
我國是一個人口大國,隨著時間推移,老齡化現(xiàn)象越來越嚴(yán)重,為緩解社會和家庭壓力,決定采用養(yǎng)老儲備金制度.公民在就業(yè)的第一年交納養(yǎng)老儲備金,數(shù)目為a1,以后每年交納的數(shù)目均比上一年增加d(d>0),因此,歷年所交納的儲備金數(shù)目a1,a2,…,an是一個公差為d的等差數(shù)列.與此同時,國家給予優(yōu)惠的計息政策,不僅采用固定利率,而且計算復(fù)利.這就是說,如果固定利率為r(r>0),那么,在第n年末,第一年所交納的儲備金就變?yōu)閍1(1+r)n-1,第二年所交納的儲備金就變?yōu)閍2(1+r)n-2,…,以Tn表示到第n年所累計的儲備金總額.
(1)寫出Tn與Tn-1(n≥2)的遞推關(guān)系式;
(2)求證:Tn=An+Bn,其中{An}是一個等比數(shù)列,{Bn}是一個等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
等差數(shù)列{an}中,a7=4,a19=2a9.
(1)求{an}的通項公式;
(2)設(shè)bn=,求數(shù)列{bn}的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
等差數(shù)列{an}中,a7=4,a19=2a9.
(1)求{an}的通項公式;
(2)設(shè)bn=,求數(shù)列{bn}的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
知{an}是首項為-2的等比數(shù)列,Sn是其前n項和,且S3,S2,S4成等差數(shù)列,
(1)求數(shù)列{an}的通項公式.
(2)若bn=log2|an|,求數(shù)列{}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列{an}滿足:a2=5,a4+a6=22,數(shù)列{bn}滿足b1+2b2+…
+2n-1bn=nan,設(shè)數(shù)列{bn}的前n項和為Sn.
(1)求數(shù)列{an},{bn}的通項公式;
(2)求滿足13<Sn<14的n的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列{an}是遞增數(shù)列,且滿足a4·a7=15,a3+a8=8.
(1)求數(shù)列{an}的通項公式;
(2)令bn=(n≥2),b1=,求數(shù)列{bn}的前n項和Sn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com