5.下列說(shuō)法中正確的是( 。
A.一個(gè)命題的逆命題為真,則它的逆否命題一定為真
B.“|a|>|b|”與“a2>b2”不等價(jià).
C.“a2+b2=0,則a,b全為0”的逆否命題是“若a,b全不為0,則a2+b2≠0”.
D.一個(gè)命題的否命題為真,則它的逆命題一定為真.

分析 利用四種命題的真假關(guān)系判斷A的正誤;不等式的等價(jià)性判斷B的正誤;逆否命題的形式判斷C的正誤;利用四種命題的真假關(guān)系判斷D的正誤.

解答 解:對(duì)于A:一個(gè)命題的逆命題為真,則它的否命題一定為真,但是逆否命題不能判斷真假;所以A不正確;
對(duì)于B:“|a|>|b|”與“a2>b2”是等價(jià)不等式,所以B不正確;
對(duì)于C:“a2+b2=0,則a,b全為0”的逆否命題是“若a,b不全為0,則a2+b2≠0”,不是“若a,b全不為0,則a2+b2≠0”,所以C不正確;
對(duì)于D:一個(gè)命題的否命題為真,則它的逆命題一定為真,滿足四種命題的真假關(guān)系,正確;
故選:D.

點(diǎn)評(píng) 本題考查命題的真假的判斷與應(yīng)用,是基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)A={(x,y)|y=cos(arccosx)},B={(x,y)|y=arccos(cosx)},則A∩B=( 。
A.{(x,y)|y=x,-1≤x≤1}B.$\left\{{(x\;,\;\;y)\left|{y=x\;,\;\;-\frac{1}{2}≤x≤\frac{1}{2}}\right.}\right\}$
C.{(x,y)y=x,0≤x≤1}D.{(x,y)|y=x,0≤x≤π}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知橢圓E的左、右焦點(diǎn)分別為F1,F(xiàn)2,過F1且斜率為2的直線交橢圓E于P,Q兩點(diǎn),若$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,則橢圓E的離心率為(  )
A.$\frac{{\sqrt{5}}}{3}$B.$\frac{2}{3}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖所示的多面體ABCDE中,已知AB∥DE,AB⊥AD,AD=2$\sqrt{3}$,AC=CD=DE=2AB=2,BC=$\sqrt{5}$,F(xiàn)是CD的中點(diǎn).
(Ⅰ)求證:AF∥平面BCE;
(Ⅱ)求多面體ABCDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知向量$\overrightarrow a=(2,sinθ)$與$\overrightarrow b=(cosθ,1)$互相垂直,其中θ∈(0,π).
(Ⅰ)求tanθ的值;
(Ⅱ)若$sin(θ-φ)=\frac{{\sqrt{10}}}{10}$,$\frac{π}{2}<φ<π$,求cosφ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某班共有學(xué)生50人,在一次數(shù)學(xué)測(cè)試中,要搜索出測(cè)試中及格(60分及以上)的成績(jī),試設(shè)計(jì)一個(gè)算法,并畫出程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下列函數(shù)中,圖象的一部分如右圖所示的是( 。
A.$y=sin({x+\frac{π}{6}})$B.$y=cos({2x-\frac{π}{6}})$C.$y=sin({2x-\frac{π}{6}})$D.$y=cos({4x-\frac{π}{3}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,已知斜三棱柱ABC-A1B1C1的所有棱長(zhǎng)均為2,∠B1BA=$\frac{π}{3}$,M,N分別為A1C1與B1C的中點(diǎn),且側(cè)面ABB1A1⊥底面ABC.
(Ⅰ)證明:MN∥平面ABB1A1
(Ⅱ)求三棱柱B1-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.甲乙兩人玩猜數(shù)字游戲,先由甲心中任想一個(gè)數(shù)字記為a,再由乙猜甲剛才想的數(shù)字,把乙猜的數(shù)字記為b,且a、b∈{0,1,2,…,9}.若|a-b|=1,則稱甲乙“心有靈犀”.現(xiàn)任意找兩人玩這個(gè)游戲,則二人“心有靈犀”的概率為$\frac{9}{50}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案