3.已知tanα=2,求$\frac{3sinα+4cosα}{2sinα-cosα}$=$\frac{10}{3}$.

分析 直接利用同角三角函數(shù)基本關(guān)系式化簡(jiǎn)求解即可.

解答 解:tanα=2,
$\frac{3sinα+4cosα}{2sinα-cosα}$=$\frac{3tanα+4}{2tanα-1}$=$\frac{10}{3}$.
故答案為:$\frac{10}{3}$.

點(diǎn)評(píng) 本題考查三角函數(shù)的化簡(jiǎn)求值,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.${∫}_{0}^{\frac{π}{2}}$(1+sinx)dx=$\frac{π}{2}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知y=sinx,則y′=cosx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.求中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過(guò)兩點(diǎn)P($\frac{1}{3}$,$\frac{1}{3}$),Q(0,-$\frac{1}{2}$)的橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在橢圓$\frac{{x}^{2}}{3}$+y2=1中,有一沿直線運(yùn)動(dòng)的粒子從一個(gè)焦點(diǎn)F2出發(fā)經(jīng)橢圓反射后經(jīng)過(guò)另一個(gè)焦點(diǎn)F1,再次被橢圓反射后又回到F2,則該粒子在整個(gè)運(yùn)動(dòng)過(guò)程中經(jīng)過(guò)的距離為4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)函數(shù)f(x)=(x-4)(x+a)為偶函數(shù),則實(shí)數(shù)a=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)函數(shù)f(x)=Asin(ωx+φ)A>0,ω>0,|φ|<$\frac{π}{2}$)的最高點(diǎn)D的坐標(biāo)為($\frac{π}{8}$,2),由最高點(diǎn)D運(yùn)動(dòng)到相鄰最低點(diǎn)時(shí),函數(shù)圖形與x軸的交點(diǎn)的坐標(biāo)為($\frac{3π}{8}$,0);
(1)求函數(shù)f(x)的解析式.
(2)當(dāng)x∈[-$\frac{π}{4}$,$\frac{π}{4}$]時(shí),求函數(shù)f(x)的最大值和最小值以及分別取得最大值和最小值時(shí)相應(yīng)的自變量x的值.
(3)若f(α)=$\frac{8}{5}$,α∈(0,$\frac{π}{8}$),求sin2α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知θ為向量$\overrightarrow{a}$與$\overrightarrow$的夾角,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,關(guān)于x的一元二次方程x2-|$\overrightarrow{a}$|x+$\overrightarrow{a}$•$\overrightarrow$=0有實(shí)根.
(Ⅰ)求θ的取值范圍;
(Ⅱ)在(Ⅰ)的條件下,求函數(shù)f(θ)=sin(2θ+$\frac{π}{3}$)的最值及對(duì)應(yīng)的θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在平面直角坐標(biāo)系xOy中,橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,直線y=x被橢圓C截得的線段長(zhǎng)為$\frac{{8\sqrt{3}}}{3}$.
( I)求橢圓C的方程.
(Ⅱ)直線l是圓O:x2+y2=r2的任意一條切線,l與橢圓C交于A、B兩點(diǎn),若以AB為直徑的圓恒過(guò)原點(diǎn),求圓O的方程,并求出|AB|的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案