設(shè)f(x)是R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=2x+x,則當(dāng)x<0時(shí),f(x)=( 。
分析:當(dāng)x<0時(shí),-x>0,所以f(-x)=2-x-x.由f(x)為奇函數(shù),能求出f(x).
解答:解:當(dāng)x<0時(shí),則-x>0,
∴f(-x)=2-x-x.
∵f(x)為奇函數(shù),
∴f(x)=-f(-x)=-(
1
2
x+x.
故選B.
點(diǎn)評(píng):本題考查函數(shù)的奇偶性的性質(zhì)和應(yīng)用,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

16、設(shè)f(x)是R上的奇函數(shù),且f(x+2)=-f(x),當(dāng)0≤x≤1時(shí),f(x)=x,則f(7.5)等于
-0.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是R上的奇函數(shù),且f(-1)=0,當(dāng)x>0時(shí),(x2+1)f′(x)-2xf(x)<0,則不等式f(x)>0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是R上的奇函數(shù),且對(duì)?x∈R都有f(x+2)=-f(x),當(dāng)-1≤x≤1時(shí),f(x)=x3,
(1)求證:直線x=1是函數(shù)f(x)的圖象的一條對(duì)稱軸;
(2)當(dāng)x=[1,5]時(shí),求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是R上的奇函數(shù),且y=f(x)的圖象關(guān)于直線x=
12
對(duì)稱,則f(1)+f(2)+f(3)+f(4)+f(5)=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是R上的奇函數(shù),且當(dāng)x∈(0,+∞)時(shí),f(x)=x(1+x),則 f(x)在 (-∞,0)上的解析式
f(x)=x(1-x)
f(x)=x(1-x)

查看答案和解析>>

同步練習(xí)冊(cè)答案