設(shè)圓C的方程x2+y2-2x-2y-2=0,直線L的方程(m+1)x-my-1=0,對任意實數(shù)m,圓C與直線L的位置關(guān)系是


  1. A.
    相交
  2. B.
    相切
  3. C.
    相離
  4. D.
    由m值確定
A
分析:直線是直線系,過定點,判斷定點的位置,從而求得結(jié)果.
解答:直線L的方程(m+1)x-my-1=0,化簡為m(x-y)+(x-1)=0,過定點(1,1);
圓C的方程x2+y2-2x-2y-2=0,圓心坐標(biāo)(1,1),顯然圓C與直線L相交.
故選A.
點評:本題考查直線與圓的位置關(guān)系,直線系方程,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(x1,y1),B(x2,y2)(x1x2≠0)是拋物線y2=2px(p>0)上的兩個動點,O是坐標(biāo)原點,向量
OA
,
OB
滿足|
OA
+
OB
|=|
OA
-
OB
|
,設(shè)圓C的方程為x2+y2-(x1+x2)x-(y1+y2)y=0.
(1)證明線段AB是圓C的直徑;
(2)當(dāng)圓C的圓心到直線x-2y=0的距離的最小值為
2
5
5
時,求p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(x1,y1),B(x2,y2)(x1x2≠0)是拋物線y2=2px(p>0)上的兩個動點,O是坐標(biāo)原點,且OA⊥OB,設(shè)圓C的方程為x2+y2-(x1+x2)x-(y1+y2)y=0.
(1)證明:圓C是以線段AB為直徑的圓;
(2)當(dāng)圓心C到直線x-2y=0的距離的最小值為
5
時,求P的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006年遼寧省高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知點A(x1,y1),B(x2,y2)(x1x2≠0)是拋物線y2=2px(p>0)上的兩個動點,O是坐標(biāo)原點,向量,滿足,設(shè)圓C的方程為x2+y2-(x1+x2)x-(y1+y2)y=0.
(1)證明線段AB是圓C的直徑;
(2)當(dāng)圓C的圓心到直線x-2y=0的距離的最小值為時,求p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006年遼寧省高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知點A(x1,y1),B(x2,y2)(x1x2≠0)是拋物線y2=2px(p>0)上的兩個動點,O是坐標(biāo)原點,向量,滿足,設(shè)圓C的方程為x2+y2-(x1+x2)x-(y1+y2)y=0.
(1)證明線段AB是圓C的直徑;
(2)當(dāng)圓C的圓心到直線x-2y=0的距離的最小值為時,求p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年高考數(shù)學(xué)壓軸大題訓(xùn)練:解析幾何中的最值問題(解析版) 題型:解答題

已知點A(x1,y1),B(x2,y2)(x1x2≠0)是拋物線y2=2px(p>0)上的兩個動點,O是坐標(biāo)原點,且OA⊥OB,設(shè)圓C的方程為x2+y2-(x1+x2)x-(y1+y2)y=0.
(1)證明:圓C是以線段AB為直徑的圓;
(2)當(dāng)圓心C到直線x-2y=0的距離的最小值為時,求P的值.

查看答案和解析>>

同步練習(xí)冊答案