【題目】在數(shù)列{an}中,a1=1,an+1=(1+ )an+
(1)設(shè)bn= ,求數(shù)列{bn}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

【答案】
(1)解:由已知得b1=a1=1,且 = + ,

即bn+1=bn+ ,從而b2=b1+ ,

b3=b2+ ,

bn=bn1+ (n≥2).

于是bn=b1+ + +…+ =2﹣ (n≥2).

又b1=1,

故所求的通項(xiàng)公式為bn=2﹣


(2)解:由(1)知an=2n﹣ ,

故Sn=(2+4+…+2n)﹣(1+ + + +…+ ),

設(shè)Tn=1+ + + +…+ ,①

Tn= + + +…+ + ,②

①﹣②得,

Tn=1+ + + +…+

= =2﹣ ,

∴Tn=4﹣

∴Sn=n(n+1)+ ﹣4


【解析】(1)由已知得 = + ,即bn+1=bn+ ,由此能夠推導(dǎo)出所求的通項(xiàng)公式.(2)由題設(shè)知an=2n﹣ ,故Sn=(2+4+…+2n)﹣(1+ + + +…+ ),設(shè)Tn=1+ + + +…+ ,由錯(cuò)位相減法能求出Tn=4﹣ .從而導(dǎo)出數(shù)列{an}的前n項(xiàng)和Sn
【考點(diǎn)精析】利用數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式對(duì)題目進(jìn)行判斷即可得到答案,需要熟知數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】本小題滿(mǎn)分為16已知函數(shù)

1,求函數(shù)的極值,并指出極大值還是極小值;

2,求函數(shù)上的最值;

3,求證:在區(qū)間上,函數(shù)的圖象在的圖象下方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p:x∈[1,2],x2﹣a≥0,命題q:x0∈R,使得x02+(a﹣1)x0﹣1<0,若p∨q為真,p∧q為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面有五個(gè)命題:
①函數(shù)y=sin4θ﹣cos4θ的最小正周期是π;
②終邊在y軸上的角的集合是 ;
③把 的圖象向右平移 得到y(tǒng)=3sin2x的圖象;
④函數(shù) 在[0,π]是減函數(shù);
其中真命題的序號(hào)是(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿(mǎn)分16分)已知函數(shù),

1)若函數(shù)上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

2)若直線是函數(shù)圖象的切線,求的最小值;

3)當(dāng)時(shí),若的圖象有兩個(gè)交點(diǎn),求證: .(取,取,取

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,則當(dāng)△AEF的面積最大時(shí),tanθ的值為(
A.2
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax3+bx+c在點(diǎn)x=2處取得極值c﹣16. (Ⅰ)求a,b的值;
(Ⅱ)若f(x)有極大值28,求f(x)在[﹣3,3]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)對(duì)于任意實(shí)數(shù)x,不等式|x+7|+|x﹣1|≥m恒成立.
(1)求m的取值范圍;
(2)當(dāng)m取最大值時(shí),解關(guān)于x的不等式:|x﹣3|﹣2x≤2m﹣12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

如圖,⊙O內(nèi)切于△ABC的邊于D,E,F(xiàn),AB=AC,連接AD交⊙O于點(diǎn)H,直線HF交BC的延長(zhǎng)線于點(diǎn)G.

(Ⅰ)求證:圓心O在直線AD上;

(Ⅱ)求證:點(diǎn)C是線段GD的中點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案