【題目】若二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R)滿足f(x+1)﹣f(x)=4x+1,且f(0)=3.
(1)求f(x)的解析式;
(2)設g(x)=f(2x),求g(x)在[﹣3,0]的最大值與最小值.

【答案】
(1)解:由f(0)=3,得c=3,

∴f(x)=ax2+bx+3.

又f(x+1)﹣f(x)=4x+1,

∴a(x+1)2+b(x+1)+3﹣(ax2+bx+3)=4x+1,

即2ax+a+b=4x+1,

∴f(x)=2x2﹣x+3


(2)解:g(x)=f(2x)=222x﹣2x+3,

令2x=t,

∴h(t)=2t2﹣t+3,

時,g(x)max=h(t)max=h(1)=2﹣1+3=4,

g(x)min=h(t)min=h( )= +3=


【解析】(1)根據(jù)待定系數(shù)法即可求出函數(shù)的解析式,(2)利用換元法和函數(shù)的性質即可求出最值.
【考點精析】解答此題的關鍵在于理解二次函數(shù)的性質的相關知識,掌握當時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當時,拋物線開口向下,函數(shù)在上遞增,在上遞減.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C:(x﹣1)2+y2=9內有一點P(2,2),過點P作直線l交圓C于A、B兩點.
(1)當l經(jīng)過圓心C時,求直線l的方程; (寫一般式)
(2)當直線l的傾斜角為45°時,求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a>0且a≠1,函數(shù)f(x)= (ax﹣ax),g(x)=﹣ax+2.
(1)指出f(x)的單調性(不要求證明);
(2)若有g(2)+f(2)=3,求g(﹣2)+f(﹣2)的值;
(3)若h(x)=f(x)+g(x)﹣2,求使不等式h(x2+tx)+h(4﹣x)<0恒成立的t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)函數(shù)f(x)=(
(1)求函數(shù)f(x)的值域
(2)求函數(shù)的單調遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是奇函數(shù),且定義域為(﹣∞,0)∪(0,+∞).若x<0時,f(x)=﹣x﹣1.
(1)求f(x)的解析式;
(2)解關于x的不等式f(x)>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】點P是橢圓 上的一點,F(xiàn)1和F2是焦點,且 ,則△F1PF2的周長為 , △F1PF2的面積為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】幾年來,網(wǎng)上購物風靡,快遞業(yè)迅猛發(fā)展,某市的快遞業(yè)務主要由兩家快遞公司承接,即圓通公司與申通公司:“快遞員”的工資是“底薪+送件提成”:這兩家公司對“快遞員”的日工資方案為:圓通公司規(guī)定快遞員每天底薪為70元,每送件一次提成1元;申通公司規(guī)定快遞員每天底薪為120元,每日前83件沒有提成,超過83件部分每件提成10元,假設同一公司的快遞員每天送件數(shù)相同,現(xiàn)從這兩家公司各隨機抽取一名快遞員并記錄其100天的送件數(shù),得到如下條形圖:

(1)求申通公司的快遞員一日工資(單位:元)與送件數(shù)的函數(shù)關系;

(2)若將頻率視為概率,回答下列問題:

①記圓通公司的“快遞員”日工資為(單位:元),求的分布列和數(shù)學期望;

②小王想到這兩家公司中的一家應聘“快遞員”的工作,如果僅從日收入的角度考慮,請你利用所學過的統(tǒng)計學知識為他作出選擇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別為AB,BC中點,則異面直線EF與AB1所成角的余弦值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知圓和直線.

(Ⅰ)求的參數(shù)方程以及圓上距離直線最遠的點坐標;

(Ⅱ)以坐標原點為極點, 軸正半軸為極軸建立極坐標系,將圓上除點以外所有點繞著逆時針旋轉得到曲線,求曲線的極坐標方程.

查看答案和解析>>

同步練習冊答案