(本小題滿分12分)
某單位選派甲、乙、丙三人組隊參加“2010上海世博會知識競賽”,甲、乙、丙三人在同時回答一道問題時,已知甲答對的概率是,甲、丙兩人都答錯的概率是,乙、丙兩人都答對的概率是,規(guī)定每隊只要有一人答對此題則記該隊答對此題.
(Ⅰ)求該單位代表隊答對此題的概率;
(Ⅱ)此次競賽規(guī)定每隊都要回答10道必答題,每道題答對得20分,答錯除該題不得分外還要倒扣去10分.若該單位代表隊答對每道題的概率相等且回答任一道題的對錯對回答其它題沒有影響,求該單位代表隊必答題得分的期望(精確到1分).
(1)設(shè)為甲、乙、丙三人單獨回答一道問題時答對的概率..
易知,;
   (3分);
故該單位代表隊答對此題的概率
  (6分)
(2)設(shè)該單位代表隊答對的題目個數(shù)為,得分為,
,且  (10分)
(分)    (12分)
略       
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
某市有A、B兩所示范高中響應(yīng)政府號召,對該市甲、乙兩個教育落后地區(qū)開展支教活動.經(jīng)上級研究決定:向甲地派出3名A校教師和2名B校教師,向乙地派出3名A校教師和3名B校教師.由于客觀原因,需從擬派往甲、乙兩地的教師中各自任選一名互換支教地區(qū).
(Ⅰ)求互換后兩校派往兩地區(qū)教師人數(shù)不變的概率;
(Ⅱ)求互換后A校教師派往甲地人數(shù)的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

本題滿分10分)2010年6月11日,第十九屆世界杯在南非拉開帷幕.比賽前,某網(wǎng)站組織球迷對巴西、西班牙、意大利、英格蘭四支奪冠熱門球隊進(jìn)行競猜,每位球迷可從四支球隊中選出一支球隊,現(xiàn)有三人參與競猜
(1)若三人中每個人可以選擇任一球隊,且選擇各個球隊是等可能的,求四支球隊中恰好有兩支球隊有人選擇的概率;
(2)若三人中有一名女球迷,假設(shè)女球迷選擇巴西隊的概率為,男球迷選擇巴西隊的概率為,記x為三人中選擇巴西隊的人數(shù),求x的分布列和期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(理)袋中有同樣的球個,其中個紅色,個黃色,現(xiàn)從中隨機且不返回地摸球,每次摸個,當(dāng)兩種顏色的球都被摸到時,即停止摸球,記隨機變量為此時已摸球的次數(shù),求:.
(1)隨機變量的概率分布律;
(2)隨機變量的數(shù)學(xué)期望與方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為了更好地服務(wù)于2010年世博會,上海某酒店隨機地對最近入住的名旅客進(jìn)行服務(wù)質(zhì)量問卷調(diào)查,把旅客對住宿的舒適滿意度與價格滿意度分為五個等級:
“1級(很不滿意)”、“2級(不滿意)”、“3級(一般)”、“4級(滿意)”、“5級(很滿意)”其結(jié)果如表所示,若在這個樣本中,任選一人,其舒適度為,價格滿意度.

(1)根據(jù)樣本中的數(shù)據(jù)求P(y=5)及P(x≥3且y=3)的值;
(2)若的期望值為,求a、b、c的值;
(3)求該人在對價格滿意(滿意度不低于3)的條件下對舒適度也滿意的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)重慶、成都兩個現(xiàn)代化城市之間有7條網(wǎng)線并聯(lián),這7條網(wǎng)線能通過的信息量分別為1,1,2,2,2,3,3(信息流量單位),現(xiàn)從中任選三條網(wǎng)線,設(shè)可通過的信息量為。若可通過的信息量≥6,則可保證信息通暢。(1)求線路信息通暢的概率;(2)求線路可通過的信息量的分布列和數(shù)學(xué)期望。
網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

兩封信隨機投入A、B、C三個空郵箱,則A郵箱的信件數(shù)ξ的數(shù)學(xué)期望Eξ=_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

隨機變量的概率分布如下:

1
2
3
4

0.2
0.3

0.3
  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋擲兩枚骰子,當(dāng)這兩枚骰子都出現(xiàn)大數(shù)(4點或大于4點)時,就認(rèn)為試驗成功。則在30次試驗中成功次數(shù)的數(shù)學(xué)期望與方差分別為(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案