設函數(shù),其中.
(Ⅰ)當時,判斷函數(shù)在定義域上的單調(diào)性;
(Ⅱ)求函數(shù)的極值點;
(Ⅲ)證明對任意的正整數(shù),不等式都成立.
解:函數(shù)的定義域為.
,令,則在上遞增,在上遞減,.當時,,
在上恒成立.
即當時,函數(shù)在定義域上單調(diào)遞增。
(II)分以下幾種情形討論:(1)由(I)知當時函數(shù)無極值點.
(2)當時,,時,
時,時,函數(shù)在上無極值點。
(3)當時,解得兩個不同解,.
當時,,,
此時在上有唯一的極小值點.
當時,
在都大于0 ,在上小于0 ,
此時有一個極大值點和一個極小值點.
綜上可知,時,在上有唯一的極小值點;
時,有一個極大值點和一個極小值點;
時,函數(shù)在上無極值點。
(III) 當時,令則在上恒正,在上單調(diào)遞增,當時,恒有.即當時,有,
對任意正整數(shù),取得
【解析】略
科目:高中數(shù)學 來源: 題型:
1 | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
π |
6 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆山西省高三第一學期8月月考理科數(shù)學試卷(解析版) 題型:解答題
設函數(shù),其中為常數(shù)。
(Ⅰ)當時,判斷函數(shù)在定義域上的單調(diào)性;
(Ⅱ)若函數(shù)有極值點,求的取值范圍及的極值點。
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年四川省高三入學考試理科數(shù)學卷 題型:解答題
(本題滿分14分)
設函數(shù),其中
(Ⅰ)若,求曲線在點處的切線方程;
(Ⅱ)是否存在負數(shù),使對一切正數(shù)都成立?若存在,求出的取值范圍;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源:2010年廣東湛江市高一下學期期末考試數(shù)學卷 題型:解答題
(本小題滿分12分)
設函數(shù),其中向量,,,且的圖象經(jīng)過點.(1)求實數(shù)的值;
(2)求函數(shù)的最小值及此時值的集合.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com