12.對賦值語句的描述正確的是( 。
①可以給變量提供初值        
②將表達(dá)式的值賦給變量
③不能給同一變量重復(fù)賦值    
④可以給一個變量重復(fù)賦值.
A.①②③B.①②C.②③④D.①②④

分析 根據(jù)賦值語句的功能,逐一分析給定四個描述的真假,可得答案.

解答 解:賦值語句可以給變量提供初值,故①正確;
賦值語句是將將表達(dá)式的值賦給變量.故②正確;
賦值語句可以給同一變量重復(fù)賦值,故③錯誤;④正確;
故選:D

點(diǎn)評 本題以命題的真假判斷與應(yīng)用為載體,考查了賦值語句的功能,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{sinx}{x}$.
(1)求函數(shù)f(x)的導(dǎo)數(shù);
(2)求曲線y=f(x)在點(diǎn)M(π,0)處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.?dāng)?shù)列{an}滿足${S_n}=2n-{a_n}({n∈{N^*}})$
(1)計算a1,a2,a3,a4
(2)猜想an的表達(dá)式,并用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.$\int_{-1}^1{({{e^{|x|}}+\sqrt{4-{x^2}}})}dx$=$2e+\frac{2}{3}π-2+\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩個焦點(diǎn)分別為F1,F(xiàn)2,離心率為$\frac{1}{2}$,過F1的直線l與橢圓C交于M,N兩點(diǎn),且△MNF2的周長為8.
(1)求橢圓C的方程;
(2)若直線y=kx+b與橢圓C分別交于A,B兩點(diǎn),且OA⊥OB,試問點(diǎn)O到直線AB的距離是否為定值,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)$f(x)=sin({x+\frac{π}{6}})+sin({x-\frac{π}{6}})+cosx+a$的最大值為1.
(1)求常數(shù)a的值;
(2)求使f(x)=0成立的x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.甲、乙兩個籃球運(yùn)動員互不影響地在同一位置投球,命中率分別為m與p,且乙投球3次均未命中的概率為$\frac{1}{64}$,甲投球未命中的概率恰是乙投球未命中的概率的2倍.
(Ⅰ)求乙投球的命中率p;
(Ⅱ)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)=(kx+b)•ex,且曲線y=f(x)在x=1處的切線方程為y=e(x-1).
(Ⅰ)求k與b的值;
(Ⅱ)求${∫}_{0}^{1}$(x•ex)dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知bcosC+bsinC=a.
(Ⅰ)求角B的大小;
(Ⅱ)若BC邊上的高等于$\frac{1}{4}a$,求cosA的值.

查看答案和解析>>

同步練習(xí)冊答案