湛江為建設(shè)國家衛(wèi)生城市,現(xiàn)計劃在相距20 km的赤坎區(qū)(記為A)霞山區(qū)(記為B)兩城區(qū)外以AB為直徑的半圓弧上選擇一點C建造垃圾處理廠,其對市區(qū)的影響度與所選地 
點到市區(qū)的距離有關(guān),對赤坎區(qū)和霞山區(qū)的總影響度為兩市區(qū)的影響度之和,記C點到赤坎區(qū)的距離為x km,建在C處的垃圾處理廠對兩市區(qū)的總影響度為y.統(tǒng)計調(diào)查表明:垃圾處理廠對赤坎區(qū)的影響度與所選地點到赤坎區(qū)的距離的平方成反比,比例系數(shù)為4;對霞山區(qū)的影響度與所選地點到霞山區(qū)的距離的平方成反比,比例系數(shù)為k.當(dāng)垃圾處理廠建在的中點時,對兩市區(qū)的總影響度為0.065.
(1)將y表示成x的函數(shù);
(2)討論(1)中函數(shù)的單調(diào)性,并判斷上是否存在一點,使建在此處的垃圾處理廠對城A和城B的總影響度最小?若存在,求出該點到赤坎區(qū)的距離;若不存在,說明理由.
(1);(2).

試題分析:(1)根據(jù)條件中描述:垃圾處理廠對赤坎區(qū)的影響度與所選地點到赤坎區(qū)的距離的平方成反比,比例系數(shù)為4;對霞山區(qū)的影響度與所選地點到霞山區(qū)的距離的平方成反比,比例系數(shù)為k,而y表示建在C處的垃圾處理廠對兩市區(qū)的總影響度為y,因此可設(shè),根據(jù)題意當(dāng)垃圾處理廠建在的中點時,對兩市區(qū)的總影響度為0.065可求得k的值;(2)由(1),,可求得,進(jìn)而可以得到y(tǒng)的在(0,20)上的單調(diào)性,從而求得y的最小值.
(1)如圖,由題意知AC⊥BC,AC=x km,則
      2分

由題意知,當(dāng)垃圾處理廠建在的中點時,對城A和城B的總影響度為0.065,即當(dāng)時,y=0.065,代入得k=9.所以y表示成x的函數(shù)為.        6分;
(2)由于,∴        8分
(舍去),    9分
當(dāng)時,,即,此時函數(shù)為單調(diào)減函數(shù);當(dāng)時,,即,此時函數(shù)為單調(diào)增函數(shù)         12分
所以當(dāng)時,即當(dāng)C點到赤坎區(qū)的距離為時,函數(shù)有最小值    14分.  
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=lnx+a,其中a為大于零的常數(shù).
(1)若函數(shù)f(x)在區(qū)間[1,+∞)內(nèi)單調(diào)遞增,求實數(shù)a的取值范圍.
(2)求證:對于任意的n∈N*,且n>1時,都有l(wèi)nn>++…+恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)f(x)=,則不等式f(x)>f(1)的解集是(  )
A.(-3,1)∪(3,+∞)B.(-3,1)∪(2,+∞)
C.(-1,1)∪(3,+∞) D.(-∞,-3)∪(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)的定義域為,若函數(shù)滿足條件:存在,使上的值域是則稱為“倍縮函數(shù)”,若函數(shù)為“倍縮函數(shù)”,則的范圍是(    )
A.            B.                       D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義在R上函數(shù)y=f(x)是減函數(shù),且函數(shù)y=f(x-1)的圖像關(guān)于(1,0)成中心對稱,若s,t滿足不等式f(s2-2s)≤-f(2t-t2),則當(dāng)1≤s≤4時,的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

類比“兩角和與差的正弦公式”的形式,對于給定的兩個函數(shù):S(x)=ax-a-x,C(x)=
ax+a-x,其中a>0,且a≠1,下面正確的運算公式是(  )
①S(x+y)=S(x)C(y)+C(x)S(y);
②S(x-y)=S(x)C(y)-C(x)S(y);
③2S(x+y)=S(x)C(y)+C(x)S(y);
④2S(x-y)=S(x)C(y)-C(x)S(y).
A.①②B.③④C.①④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)f(x)的導(dǎo)函數(shù)是(x)=-x(x+1),則函數(shù)g(x)=f(logax)(0<a<1)的單調(diào)遞減區(qū)間是(   )
A.[-1,0]B.[,+∞),(0,1]
C.[1, ]D.(-∞,) ,(,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),若
,則=(   )
A.2B.4C.8D.隨值變化

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

己知集合M={﹣1,1,2,4}N={0,1,2}給出下列四個對應(yīng)法則,其中能構(gòu)成從M到N的函數(shù)是(  )
A.y=x2B.y=x+1C.y=2xD.y=log2|x|

查看答案和解析>>

同步練習(xí)冊答案