【題目】已知函數(shù)f(x)=2x3+3x2﹣12x+5. (Ⅰ)求曲線y=f(x)在點(diǎn)(0,5)處的切線方程;
(Ⅱ)求函數(shù)f(x)的極值.

【答案】解:f′(x)=6x2+6x﹣12 (Ⅰ)依題意可知:k=f′(x)|x=0=﹣12
∴切線方程為:y﹣5=﹣12x
即12x+y﹣5=0
(Ⅱ)令f′(x)=0,得:x1=﹣2,x2=1

x

(﹣∞,﹣2)

﹣2

(﹣2,1)

1

(1,+∞)

f'(x)

+

0

+

f(x)

極大值
25

極小值﹣2

∴f(x)的極大值為f(﹣2)=25,極小值為f(1)=﹣2
【解析】(Ⅰ)求出函數(shù)的導(dǎo)數(shù)在x=0的導(dǎo)數(shù)值,就是切線的斜率,利用點(diǎn)斜式求解曲線y=f(x)在點(diǎn)(0,5)處的切線方程;(Ⅱ)利用函數(shù)的導(dǎo)數(shù)為0,求出極值點(diǎn),判斷導(dǎo)函數(shù)的符號(hào),即可求函數(shù)f(x)的極值.
【考點(diǎn)精析】本題主要考查了函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,已知PA⊥平面ABCD,且四邊形ABCD為直角梯形,∠ABC=∠BAD= ,PA=AD=2,AB=BC=1.
(1)求平面PAB與平面PCD所成二面角的余弦值;
(2)點(diǎn)Q是線段BP上的動(dòng)點(diǎn),當(dāng)直線CQ與DP所成的角最小時(shí),求線段BQ的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2﹣4x+1.

( I)當(dāng)x∈[0,3]時(shí),畫出函數(shù)y=f(x)的圖象并寫出值域;
(II)若函數(shù)y=f(x)在區(qū)間[a,a+1]上單調(diào),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上的拋物線直線y=2x+1截得的弦長(zhǎng)為 ,求拋物線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】
(1)已知點(diǎn)M(1,-3),N(1,2),P(5,y),且∠NMP=90°,則log8(7+y)=.
(2)若把本題中“∠NMP=90°”改為“l(fā)og8(7+y)= ”,其他條件不變,則∠NMP=.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圍建一個(gè)面積為360m2的矩形場(chǎng)地,要求矩形場(chǎng)地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對(duì)面的新墻上要留一個(gè)寬度為2m的進(jìn)出口,已知舊墻的維修費(fèi)用為45元/m,新墻的造價(jià)為180元/m,設(shè)利用的舊墻的長(zhǎng)度為x(單位:m),修建此矩形場(chǎng)地圍墻的總費(fèi)用為y(單位:元). (Ⅰ)將y表示為x的函數(shù):
(Ⅱ)試確定x,使修建此矩形場(chǎng)地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l的傾斜角為135°,直線l1經(jīng)過點(diǎn)A(3,2),B(a , -1),且l1l垂直,直線l2:2xby+1=0與直線l1平行,則ab等于( )
A.-4
B.-2
C.0
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 是單調(diào)遞增的等差數(shù)列,首項(xiàng) ,前 項(xiàng)和為 ,數(shù)列 是等比數(shù)列,首項(xiàng) ,且 .
(1)求數(shù)列 的通項(xiàng)公式;
(2)設(shè) ,求數(shù)列 的前 項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了培養(yǎng)學(xué)生的數(shù)學(xué)建模和應(yīng)用能力,某校組織了一次實(shí)地測(cè)量活動(dòng),如圖,假設(shè)待測(cè)量的樹木 的高度 ,垂直放置的標(biāo)桿 的高度 ,仰角 三點(diǎn)共線),試根據(jù)上述測(cè)量方案,回答如下問題:

(1)若測(cè)得 ,試求 的值;
(2)經(jīng)過分析若干測(cè)得的數(shù)據(jù)后,大家一致認(rèn)為適當(dāng)調(diào)整標(biāo)桿到樹木的距離 (單位:)使 之差較大時(shí),可以提高測(cè)量的精確度.若樹木的實(shí)際高為 ,試問 為多少時(shí), 最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案