【題目】現(xiàn)代社會,“鼠標手”已成為常見病,一次實驗中,10名實驗對象進行160分鐘的連續(xù)鼠標點擊游戲,每位實驗對象完成的游戲關(guān)卡一樣,鼠標點擊頻率平均為180次/分鐘,實驗研究人員測試了實驗對象使用鼠標前后的握力變化,前臂表面肌電頻率()等指標.

(I)10 名實驗對象實驗前、后握力(單位:)測試結(jié)果如下:

實驗前:346,357,358,360,362,362,364,372,373,376

實驗后:313,321,322,324,330,332,334,343,350,361

完成莖葉圖,并計算實驗后握力平均值比實驗前握力的平均值下降了多少

(Ⅱ)實驗過程中測得時間(分)與10名實驗對象前臂表面肌電頻率()的中的位數(shù))的九組對應數(shù)據(jù),.建立關(guān)于時間的線性回歸方程;

(Ⅲ)若肌肉肌電水平顯著下降,提示肌肉明顯進入疲勞狀態(tài),根據(jù)(Ⅱ)中9組數(shù)據(jù)分析,使用鼠標多少分鐘就該進行休息了?

參考數(shù)據(jù):;

參考公式:回歸方程中斜率和截距的最小二乘估計公式分別為:

【答案】(I)莖葉圖見解析,;(Ⅱ);(Ⅲ)60分鐘.

【解析】

(Ⅰ)結(jié)合所給數(shù)據(jù)可得莖葉圖;分別求出實驗前、后握力的平均數(shù)后比較可得結(jié)果.(Ⅱ)根據(jù)所給公式并結(jié)合條件中的數(shù)據(jù)可得,于是可得線性回歸方程.(Ⅲ)分析九組數(shù)據(jù)可得,在40分鐘到60分鐘的下降幅度最大,由此可得結(jié)論.

(Ⅰ)根據(jù)題意得到莖葉圖如下圖所示:

由圖中數(shù)據(jù)可得 ,

,

,

∴故實驗前后握力的平均值下降.

(Ⅱ)由題意得,

,

,

,

關(guān)于時間的線性回歸方程為.

(Ⅲ)九組數(shù)據(jù)中40分鐘到60分鐘的下降幅度最大,提示60分鐘時肌肉已經(jīng)進入疲勞狀態(tài),

故使用鼠標60分鐘就該休息了.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點為,點在橢圓上.

(1)設點到直線的距離為,證明:為定值;

(2)若是橢圓上的兩個動點(都不與重合),直線的斜率互為相反數(shù),求直線的斜率(結(jié)果用表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個圓經(jīng)過點,且和直線相切.

1)求動圓圓心的軌跡的方程;

2)已知點,設不垂直于軸的直線與軌跡交于不同的兩點,若軸是的角平分線,證明直線過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市為調(diào)研學校師生的環(huán)境保護意識,決定在本市所有學校中隨機抽取60所進行環(huán)境綜合考評成績達到80分以上(含80分)為達標.60所學校的考評結(jié)果頻率分布直方圖如圖所示(其分組區(qū)間為[50,60),[60,70),[70,80),[8090),[90100]).

)試根據(jù)樣本估汁全市學校環(huán)境綜合考評的達標率;

)若考評成績在[90.100]內(nèi)為優(yōu)秀.且甲乙兩所學校考評結(jié)果均為優(yōu)秀從考評結(jié)果為優(yōu)秀的學校中隨機地抽取兩所學校作經(jīng)驗交流報告,求甲乙兩所學校至少有一所被選中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的圖象在點處的切線方程;

(Ⅱ)若,且對任意恒成立,求的最大值;

(Ⅲ)當時,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,圓,是圓M內(nèi)一個定點,P是圓上任意一點,線段PN的垂直平分線l和半徑MP相交于點Q,當點P在圓M上運動時,點Q的軌跡為曲線E.

1)求曲線E的方程;

2)已知拋物線上,是否存在直線m與曲線E交于GH,使得G,H中點F落在直線y2x上,并且與拋物線相切,若直線m存在,求出直線m的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若,求實數(shù)的取值范圍;

(2)設函數(shù)的極大值為,極小值為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的頂點邊上的中線所在直線方程為,的角平分線所在直線方程為

(I)求頂點的坐標;

(II)求直線的方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,為左、右焦點,直線交橢圓于,兩點.

1)若垂直于軸時,求

2)當時,軸上方時,求,的坐標;

3)若直線軸于,直線軸于,是否存在直線,使,若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案