在△ABC中,點(diǎn)B的坐標(biāo)為(-1,0),BC邊上的高所在直線的方程為x-4y+5=0,∠A的平分線所在直線的方程為x-y-1=0,求點(diǎn)A,C的坐標(biāo).
C由
x-4y+5=0
x-y-1=0
解得,A(3,2)
設(shè)點(diǎn)B關(guān)于∠A的平分線對(duì)稱的點(diǎn)為D(m,n),則:
n
m+1
=-1
m-1
2
-
y
2
-1=0

解得,D(1,-2)
由角分線性質(zhì)知:點(diǎn)D在直線AC上,故直線AC的方程為:y=2x-4
設(shè)點(diǎn)C的坐標(biāo)為(x,y),則
y=2x-4
y
x+1
=-4
解得:
x=0
y=-4
即C(0,-4).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線2x+y=8的截距式方程為( 。
A.y=-2x+8B.
x
4
+
y
8
=1
C.
x
4
+
y
-8
=0
D.
x
4
+
y
-8
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線l的方程為Ax+By+C=0,當(dāng)A>0,B<0,C>0時(shí),直線l必經(jīng)過( 。
A.第一、二、三象限B.第二、三、四象限
C.第一、三、四象限D.第一、二、四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

過點(diǎn)P(1,4)作直線l,直線l與x,y的正半軸分別交于A,B兩點(diǎn),O為原點(diǎn),
(Ⅰ)△ABO的面積為9,求直線l的方程;
(Ⅱ)若△ABO的面積為S,求S的最小值并求此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)A(1,0),B(-1,0),過點(diǎn)C(0,-1)的直線l與線段AB相交,則直線l的傾斜角范圍是( 。
A.[45°,135°]B.[45°,90°)∪(90°,135°]
C.[0°,45°]∪[135°,180°]D.[0°,135°]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在△ABC中,AB邊上的高所在直線方程為x+2y+1=0,∠C的平分線所在直線方程為y-1=0,若點(diǎn)A的坐標(biāo)為(0,-1),求點(diǎn)B和C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過點(diǎn)P(1,2)作直線l與圓(x-2)2+y2=9相交于A,B兩點(diǎn),那么|AB|的最小值為( 。
A.2B.4C.3D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知兩個(gè)點(diǎn)M(-3,0)和N(3,0),若直線上存在點(diǎn)P,使|PM|+|PN|=10,則稱該直線為“A型直線”,則下列直線
①x=6②y=-5③y=x④y=2x+1中為“A型直線”的是______(填上所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線與曲線C:有交點(diǎn),則的取值范圍是( )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案