已知{an}是等差數(shù)列,a1+a3+a5=99,a2+a4+a6=93,Sn表示{an}的前n項和,則使Sn達到最大值的n是


  1. A.
    18
  2. B.
    19
  3. C.
    20
  4. D.
    21
B
分析:由{an}是等差數(shù)列,a1+a3+a5=99,a2+a4+a6=93,知a3=33,a4=31,利用等差數(shù)列的通項公式列出方程組,解得a1=37,d=-2,再由等差數(shù)列的前n項和公式得到Sn=-n2+36n,然后利用配方法能求出Sn達到最大值時n的值.
解答:∵{an}是等差數(shù)列,a1+a3+a5=99,a2+a4+a6=93,
∴a3=33,a4=31,
,
解得a1=37,d=-2,

=-n2+38n
=-(n-19)2+361,
∴n=19時,Sn達到最大值S19=361.
故選B.
點評:本題考要等差數(shù)列的通項公式和前n項和公式,是基礎題.解題時要認真審題,注意配方法的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),數(shù)列{an}
滿足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求證:數(shù)列{a2k-1}是等差數(shù);數(shù)列{a2k}是等比數(shù)列;(其中k∈N*);
(II)記an=f(n),對任意的正整數(shù)n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設Sn是等差數(shù){an}的前n項和,已知S6=36,Sn=324,若Sn-6=144(n>6),則n等于

A.15                 B.16             C.17                D.18

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),數(shù)列{an}
滿足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求證:數(shù)列{a2k-1}是等差數(shù);數(shù)列{a2k}是等比數(shù)列;(其中k∈N*);
(II)記an=f(n),對任意的正整數(shù)n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年重慶市南開中學高三(上)期末數(shù)學試卷(文科)(解析版) 題型:解答題

已知滿足:
(I)求證:數(shù)列{a2k-1}是等差數(shù);數(shù)列{a2k}是等比數(shù)列;(其中k∈N*);
(II)記an=f(n),對任意的正整數(shù)n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

查看答案和解析>>

同步練習冊答案