19.已知兩個不同的平面α、β和兩個不重合的直線m、n,有下列四個命題:
①若m∥n,m⊥α,則n⊥α;
②若m∥α,α∩β=n,則m∥n;
③若m⊥α,α⊥β,n?β,則m∥n; 
④若m⊥α,α∥β,則m⊥β.
其中正確命題的個數(shù)是( 。
A.0B.1C.2D.3

分析 在①中,由線面垂直的判定定理得n⊥α;在②中,m與n相交、平行或異面;在③中,m與n相交、平行或異面;在④中,由線面垂直的判定定理得m⊥β.

解答 解:由兩個不同的平面α、β和兩個不重合的直線m、n,知:
在①中,若m∥n,m⊥α,則由線面垂直的判定定理得n⊥α,故①正確;
在②中,若m∥α,α∩β=n,則m與n相交、平行或異面,故②錯誤;
在③中,若m⊥α,α⊥β,n?β,則m與n相交、平行或異面,故③錯誤;
在④中,若m⊥α,α∥β,則由線面垂直的判定定理得m⊥β,故④正確.
故選:C.

點評 本題考查命題真假的判斷,是中檔題,解題時要認(rèn)真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,雙曲線的中心在坐標(biāo)原點O,M、N分別為雙曲線虛軸的上、下端點,A是雙曲線的右頂點,F(xiàn)是雙曲線的右焦點,直線AM與FN相交于點P,若∠APF是銳角,則此雙曲線的離心率的取值范圍是( 。
A.($\frac{1+\sqrt{5}}{2}$,+∞)B.(1+$\sqrt{5}$,+∞)C.(0,$\frac{\sqrt{5}-1}{2}$)D.($\frac{1+\sqrt{5}}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.要得到函數(shù)y=log2(2x+1)的圖象,只需將y=1+log2x的圖象( 。
A.向左移動$\frac{1}{2}$個單位B.向右移動$\frac{1}{2}$個單位
C.向左移動1個單位D.向右移動1個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在△ABC中,角A、B、C所對的邊分別為a、b、c,若B=60°,b2=ac,則△ABC一定是( 。
A.直角三角形B.鈍角三角形C.等邊三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知直線y=x-2與拋物線y2=2x相交于A、B兩點.
(1)求證:OA⊥OB.
(2)求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.將邊長為1正方形ABCD沿對角線BD折成直二面角A-BD-C,有如下四個結(jié)論:
(1)AC⊥BD;
(2)△ACD是等腰直角三角形;
(3)四面體A-BCD的表面積為1+$\frac{\sqrt{3}}{2}$;
(4)直線AC與平面BCD所成角為60°.
則正確結(jié)論的序號為(1)(3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥面ABCD,PA=AD=4,AB=2,以AC為直徑的球面交PD于M點.
(I)求證:面ABM⊥面PCD;
(II)求點D到平面ACM的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.為改善城市霧霾天氣造成的空氣污染,社會各界掀起凈化、美化環(huán)境的熱潮.某單位計劃在辦公樓前種植 A,B,C,D四棵風(fēng)景樹,受本地地理環(huán)境的影響,A,B兩棵樹種成活的概率均為$\frac{1}{2}$,另外兩棵樹種的成活率都為a(0<a<1).
(1)若出現(xiàn)A,B有且只有一棵成活的概率與C,D都成活的概率相等,求a的值;
(2)當(dāng)a=$\frac{2}{3}$時,記ξ為最終成活的樹的數(shù)量,求ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知直線l1:(m+2)x+(m+3)y-5=0和l2:6x+(2m-1)y-5=0,問實數(shù)m為何值時,分別有:
(1)l1與l2相交?(2)l1∥l2?(3)l1與l2重合?

查看答案和解析>>

同步練習(xí)冊答案