已知全集為R,函數(shù)f(x)=lg(1-x)的定義域為集合A,集合B={x|x(x-1)>6},
(1)求A∪B,A∩(∁RB);
(2)若C={x|1-m<x<m},C⊆(A∩(∁RB),求實數(shù)m的取值范圍.
考點:交、并、補集的混合運算
專題:計算題,集合
分析:(1)由1-x>0求出集合A,由x2-x-6>0求出集合B,從而進一步求出A∪B,A∩(∁RB);
(2)因為C⊆(A∩(∁RB),分情況討論即可求實數(shù)m的取值范圍.
解答: 解:(1)由1-x>0得,函數(shù)f(x)=lg(1-x)的定義域A={x|x<1},
x2-x-6>0,(x-3)(x+2)>0,得B={x|x>3或x<-2},
∴A∪B={x|x<1或x>3},
RB={x|-2≤x≤3},A∩(∁RB)={x|-2≤x<1};
(2)C⊆={x|-2≤x<1},
①當C=∅時,滿足要求,此時1-m≥m,得m≤
1
2
; 
②當C≠∅時,要C⊆={x|-2≤x<1},則
1-m<m
1-m≥-2
m≤1
,
解得
1
2
<m≤1;  
由①②得,m≤1
故實數(shù)m的取值范圍m≤1.
點評:此題考查了交、并、補集的混合運算,熟練掌握各自的定義是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知非零向量
a
b
,則下列各式正確的是( 。
A、|
a
|+|
b
|=|
a
-
b
|
B、|
a
|+|
b
|=|
a
+
b
|
C、|
a
|-|
b
|=|
a
-
b
|
D、|
a
+
b
|=|
a
-
b
|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

i是虛數(shù)單位,若復數(shù)z=
3+i
1-i
,則復數(shù)z的實部與虛部的和是(  )
A、3B、1+2i
C、2D、1-2i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)的定義域為R,且對任意實數(shù)a、b,都有f(a+b)=f(a)+f(b),當x>0時,f(x)<0恒成立.
(1)求證:函數(shù)y=f(x)是R上的減函數(shù);
(2)若不等式f(mx2-x+1)<-f(x2-mx)對任意實數(shù)x恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,曲線G的方程為y=
2x
.直線BC與曲線G交于點A,設B(0,b),C(c,0),點A的橫坐標為a,當|
.
OA
|=|
.
OB
|時,
(Ⅰ)求點A的橫坐標a與點C的橫坐標c的關系式;
(Ⅱ)設曲線G上點D的橫坐標為a+2,求直線CD的傾斜角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

通過隨機詢問某地110名高中學生在坐座位時是否挑同桌,得知如下的列聯(lián)表.
合計
挑同桌404080
不挑同桌201030
總計6050110
(1)從這60名男生中按是否挑同桌采取分層抽樣的方法,抽取一個容量為6的樣本,問樣本中挑同桌與不挑同桌的男生各有多少名?
(2)從(1)中的6名男生樣本中隨機選取2名作深度采訪,求選到挑同桌與不挑同桌的男生各1名的概率;
(3)根據(jù)以上列聯(lián)表,是否有85%的把握認為“性別與坐座位時是否挑同桌”有關?
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.
參考值表:
p(K2≥k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+ϕ)+B的一部分圖象如圖所示,如果A>0,ω>0,|φ|<
π
2
,
(1)求函數(shù)f(x)的解析式.
(2)記g(x)=log2[f(x)-1],求函數(shù)g(x)的定義域.
(3)若對任意的x∈[-
π
6
,
π
6
],不等式log
1
2
f(x)>m-3恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1,在平面四邊形ACPE中,D為AC中點,AD=DC=PD=2,AE=1,且AE⊥AC,PD⊥AC,現(xiàn)沿PD折起使∠ADC=90°,得到立體圖形(如圖2),又B為平面ADC內(nèi)一點,并且ABCD為正方形,設F,G,H分別為PB,EB,PC的中點.
(1)求三棱錐P-GHF的體積;
(2)在線段PC上是否存在一點M,使直線FM與直線PA所成角為60°?若存在,求出線段的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=3sin(
1
2
x+
π
4
),x∈R.
(1)用“五點法”作出在一個周期內(nèi)f(x)的簡圖.(列表、作圖);
(2)寫出f(x)的對稱軸方程、對稱中心及單調(diào)遞減區(qū)間;
(3)函數(shù)y=sinx的圖象經(jīng)過怎樣的變換可得到f(x)=3sin(
1
2
x+
π
4
),x∈R的圖象.

查看答案和解析>>

同步練習冊答案