16.已知函數(shù)f(x)=sin(ωx+φ)(ω>,|φ|<$\frac{π}{2}$),其圖象相鄰兩個(gè)對(duì)稱中心的距離為$\frac{π}{2}$,且f(x+$\frac{π}{6}$)=f(-x),下列判斷正確的是。ā 。
A.函數(shù)f(x)的最小正周期為2π
B.函數(shù)f(x)的圖象關(guān)于點(diǎn)($\frac{7π}{12}$,0)對(duì)稱
C.函數(shù)f(x)在[$\frac{3π}{4}$,π]上單調(diào)遞增
D.函數(shù)f(x)的圖象關(guān)于直線x=-$\frac{7π}{12}$對(duì)稱

分析 確定函數(shù)的解析式,即可得出結(jié)論.

解答 解:由題意,T=π=$\frac{2π}{ω}$,∴ω=2,
∵f(x+$\frac{π}{6}$)=f(-x),∴函數(shù)關(guān)于x=$\frac{π}{12}$對(duì)稱,
∴sin($\frac{π}{6}$+φ)=±1,∵|φ|<$\frac{π}{2}$,∴φ=$\frac{π}{3}$,
∴f(x)=sin(2x+$\frac{π}{3}$),
對(duì)照選項(xiàng),可得C正確.
故選C.

點(diǎn)評(píng) 本題主要考查利用y=Asin(ωx+φ)的圖象特征,由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某學(xué)校需從3名男生和2名女生中選出4人,分派到甲、乙、丙三地參加義工活動(dòng),其中甲地需要選派2人且至少有1名女生,乙地和丙地各需要選派1人,則不同的選派方法的種數(shù)是( 。
A.18B.24C.36D.42

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=2sinωx-4sin2$\frac{ωx}{2}$+2+m(其中ω>0,m∈R),且當(dāng)x=$\frac{1}{2}$時(shí),f(x)的圖象在y軸右側(cè)得到第一個(gè)最高點(diǎn).
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)若f(x)在區(qū)間[2,4]上的最大值為5,最小值是p,求m和p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)奇函數(shù)f(x)在區(qū)間[-7,-3]上是減函數(shù)且最小值為-6,函數(shù)g(x)=$\frac{ax+1}{x+2}$,其中a<$\frac{1}{2}$.
(1)判斷函數(shù)g(x)在(-2,+∞)上的單調(diào)性,并用定義法證明;
(2)求函數(shù)F(x)=f(x)+g(x)在區(qū)間[3,7]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知atanB=2bsinA.
(1)求B;
(2)若b=$\sqrt{3}$,A=$\frac{5π}{12}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在正項(xiàng)等比數(shù)列{an}和正項(xiàng)等差數(shù)列{bn}中,已知a1,a11的等比中項(xiàng)與b1,b11的等差中項(xiàng)相等,且$\frac{1}{_{1}}$+$\frac{4}{_{11}}$≤1,當(dāng)a6取得最小值時(shí),等差數(shù)列{bn}的公差d的取值集合為( 。
A.{d|d$≥\frac{3}{10}$}B.{d|0$<d<\frac{3}{10}$}C.{$\frac{3}{10}$}D.{d|d$≥\frac{3}{11}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在平面直角坐標(biāo)系中,過點(diǎn)(0,1),傾斜角為45°的直線L,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線E的極坐標(biāo)方程為ρcos2θ=4sinθ.
(1)將曲線E化為直角坐標(biāo)方程,并寫出直線L的一個(gè)參數(shù)方程;
(2)直線L與圓x2+(y-1)2=1從左到右交于C,D,直線L與E從左到右 交于A,B,求|AC|+|BD|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知向量$\overrightarrow{a}$=(2,m),$\overrightarrow$=(-1,2),若$\overrightarrow{a}$⊥$\overrightarrow$,則$\overrightarrow{a}$在向量$\overrightarrow{c}$=$\overrightarrow{a}$+$\overrightarrow$上的投影為( 。
A.$\frac{\sqrt{5}}{2}$B.-$\frac{\sqrt{10}}{2}$C.-$\frac{\sqrt{5}}{2}$D.$\frac{\sqrt{10}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,一環(huán)形花壇分成A,B,C,D四塊,現(xiàn)有3種不同的花供選種,要求在每塊里種一種花,且相鄰的2塊種不同的花,則不同的種法總數(shù)為( 。
A.12B.24C.18D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案