10.命題“?x∈R,x2+2x-6>0”的否定?x∈R,x2+2x-6≤0.

分析 直接利用全稱命題的否定是特稱命題寫出結(jié)果即可.

解答 解:因?yàn)槿Q命題的否定是特稱命題,
所以,命題“?x∈R,x2+2x-6>0”的否定是:?x∈R,x2+2x-6≤0.
故答案為:?x∈R,x2+2x-6≤0.

點(diǎn)評 本題考查命題的否定,全稱命題與特稱命題的否定關(guān)系,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=ax2+1,g(x)=x3+bx,其中a>0,b>0.
(1)若曲線y=f(x)與曲線y=g(x)在它們的交點(diǎn)P(2,c)處有相同的切線(P為切點(diǎn)),求a,b的值;
(2)令h(x)=f(x)+g(x),若函數(shù)h(x)的單調(diào)遞減區(qū)間為[-$\frac{a}{2}$,-$\frac{\sqrt}{3}$],求函數(shù)h(x)在區(qū)間(-∞,-1]上的最大值M(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知集合A={x|x2-2x-3≤0},B={x|y=ln(2-x)},則A∩B=[-1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖所示,在正方體ABCD-A1B1C1D1中,E是B1D1的中點(diǎn).求證:
(1)平面A1BD∥平面D1B1C;
(2)平面D1B1C⊥平面C1EC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知cosα=-$\frac{1}{2}$,α∈(0°,180°),則α等于( 。
A.60°B.120°C.45°D.135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在三棱錐O-ABC中,M,N分別是OA,BC的中點(diǎn),G是三角形ABC的重心,則$\overrightarrow{OG}$=( 。
A.$\frac{1}{2}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{4}$$\overrightarrow{OC}$B.$\frac{1}{4}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{2}$$\overrightarrow{OC}$C.$\frac{1}{2}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{3}$$\overrightarrow{OC}$D.$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{3}$$\overrightarrow{OC}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左,右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P為橢圓上不同于左右頂點(diǎn)的任意一點(diǎn),△F1PF2的重心為G,內(nèi)心為I,且有$\overrightarrow{IG}$=t$\overrightarrow{{F}_{1}{F}_{2}}$,則橢圓C的離心率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知數(shù)列{an}滿足$\frac{ln{a}_{1}}{3}$•$\frac{ln{a}_{2}}{6}$•$\frac{ln{a}_{3}}{9}$•…•$\frac{ln{a}_{n}}{3n}$=$\frac{3n}{2}$(n∈N*),則 a10=(  )
A.e30B.e${\;}^{\frac{100}{3}}$C.e${\;}^{\frac{110}{3}}$D.e40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.下列說法正確的有:(1)(4)
(1)在△ABC中,當(dāng)sinA>sinB時(shí),一定有A>B;
(2)在△ABC中,2cosBsinA=sinC,則△ABC的一定是等腰直角三角形;
(3)在△ABC中,若a=6,b=9,A=45°,則解該三角形有兩解;
(4)函數(shù)f(x)=$\sqrt{3}$sin2x-cos2x的圖象可以由函數(shù)g(x)=4sinxcosx的圖象向右平移$\frac{π}{12}$個(gè)單位得到.

查看答案和解析>>

同步練習(xí)冊答案