【題目】某商品一年內(nèi)出廠價(jià)格在6元的基礎(chǔ)上按月份隨正弦曲線波動(dòng),已知3月份達(dá)到最高價(jià)格8元,7月份價(jià)格最低為4元,該商品在商店內(nèi)的銷售價(jià)格在8元基礎(chǔ)上按月份隨正弦曲線波動(dòng),5月份銷售價(jià)格最高為10元,9月份銷售價(jià)最低為6元,假設(shè)商店每月購進(jìn)這種商品m件,且當(dāng)月銷完,你估計(jì)哪個(gè)月份盈利最大?

【答案】6月份盈利最大

【解析】

根據(jù)所給數(shù)據(jù),利用待定系數(shù)法求得出廠價(jià)格波動(dòng)的正弦曲線以及商品在商店內(nèi)的銷售價(jià)格波動(dòng)的正弦曲線解析式,兩式相減,利用兩角和與差的正弦公式化簡可,由正弦函數(shù)的性質(zhì)可得,進(jìn)而可得結(jié)果.

設(shè)出廠價(jià)波動(dòng)函數(shù)為y1=6+Asin(ω1x+φ1)

易知A=2 T1=8 ω1 1 φ1=- ∴y1=6+2sin(x-)

設(shè)銷售價(jià)波動(dòng)函數(shù)為y2=8+Bsin(ω2x+φ2)

易知B=2 T2=8 ω2 2 φ2=-

∴y2=8+2sin(x-)

每件盈利 y=y(tǒng)2-y1=[8+2sin(x-)]-[6+2sin(x-)]

=2-2sinx

當(dāng)sinx=-1 x=2kπ- x=8k-2時(shí)y取最大值

當(dāng)k=1 即x=6時(shí) y最大 ∴估計(jì)6月份盈利最大

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將兩塊三角板按圖甲方式拼好,其中, ,

,現(xiàn)將三角板沿折起,使在平面上的射影恰好在上,如圖乙.

1)求證: ;

2)求證: 為線段中點(diǎn);

3)求二面角的大小的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的定義域?yàn)?/span>,若存在非零實(shí)數(shù)滿足對(duì)任意,均有,且,則稱上的高調(diào)函數(shù). 如果定義域?yàn)?/span>的函數(shù)是奇函數(shù),當(dāng)時(shí),,且上的8高調(diào)函數(shù),那么實(shí)數(shù)的取值范圍為____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某學(xué)校的名男生中隨機(jī)抽取名測量身高,被測學(xué)生身高全部介于之間,將測量結(jié)果按如下方式分成八組:第一組,第二組,第八組,下圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組的人數(shù)為人。

)求第七組的頻率;

)估計(jì)該校的名男生的身高的中位數(shù)以及身高在以上(含)的人數(shù);

)若從身高屬于第六組和第八組的所有男生中隨機(jī)抽取兩名男生,記他們的身高分別為,事件,事件,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】海安市江淮文化園是以江淮歷史文化為底蘊(yùn)的人文景觀,整個(gè)園區(qū)由白龍故里、先賢景區(qū)、鳳山書院、中國名人藝術(shù)館群四大景區(qū)組成.據(jù)估計(jì),其中鳳山書院景區(qū)每天的水電、人工等固定成本為1000元,另每增加一名游客需另外增加成本10元,鳳山書院景區(qū)門票單價(jià)x(元)(x∈N*)與日門票銷售量(張)的關(guān)系如下表,并保證鳳山書院景區(qū)每天盈利.

x

20

35

40

50

y

400

250

200

100

(1)在坐標(biāo)圖紙中,根據(jù)表中提供的數(shù)據(jù),描出實(shí)數(shù)對(duì)的對(duì)應(yīng)點(diǎn),并確定y與x的函數(shù)關(guān)系式;

(2)求出的值,并解釋其實(shí)際意義;

(3)請(qǐng)寫出鳳山書院景區(qū)的日利潤的表達(dá)式,并回答該景區(qū)怎樣定價(jià)才能獲最大日利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集U=R,集合 ,P={x|﹣1≤x≤4},則(UM)∩P等于(
A.{x|﹣4≤x≤﹣2}
B.{x|﹣1≤x≤3}
C.{x|3≤x≤4}
D.{x|3<x≤4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)半徑為1的半球材料中截取兩個(gè)高度均為的圓柱,其軸截面如圖所示.設(shè)兩個(gè)圓柱體積之和為

(1)的表達(dá)式,并寫出的取值范圍;

(2)求兩個(gè)圓柱體積之和的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩個(gè)不相等的非零向量 , ,兩組向量 均由2個(gè) 和3個(gè) 排列而成,記S= ,Smin表示S所有可能取值中的最小值,則下列命題中
1)S有5個(gè)不同的值;(2)若 則Smin與| |無關(guān);(3)若 則Smin與| |無關(guān);(4)若| |>4| |,則Smin>0;(5)若| |=2| |,Smin=8| |2 , 則 的夾角為 .正確的是(
A.(1)(2)
B.(2)(4)
C.(3)(5)
D.(1)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線:y=k (x+2)與圓O:相交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),ABO的面積為S.

(1)試將S表示成的函數(shù)S(k),并求出它的定義域;

2)求S的最大值,并求取得最大值時(shí)k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案