【題目】兩次購(gòu)買同一種物品,可以用兩種不同的策略,第一種是不考慮物品價(jià)格的升降,每次購(gòu)買這種物品的數(shù)量一定;第二種是不考慮物品價(jià)格的升降,每次購(gòu)買這種物品所花的錢數(shù)一定.哪種購(gòu)物方式比較經(jīng)濟(jì)?你能把所得結(jié)論作一些推廣嗎?
【答案】詳見(jiàn)解析
【解析】
求出兩種方案購(gòu)物的平均價(jià)格,再利用作差比較法比較它們的大小即得解.
解:按第一種策略購(gòu)物,設(shè)第一次購(gòu)物時(shí)的價(jià)格為,購(gòu),第二次購(gòu)物時(shí)的價(jià)格為元/kg,仍購(gòu),兩次購(gòu)物的平均價(jià)格為;
若按第二種策略購(gòu)物,第一次花m元錢,能購(gòu)物品,第二次仍花m元錢,能購(gòu)物品,兩次購(gòu)物的平均價(jià)格為.
比較兩次購(gòu)的平均價(jià)格:.
所以第一種策略的平均價(jià)格高于第二種策略的平均價(jià)格,因而用第二種策略比較經(jīng)濟(jì),一般地,如果是多次購(gòu)買同一種物品,用第二種策略購(gòu)買比較經(jīng)濟(jì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某群體的人均通勤時(shí)間,是指單日內(nèi)該群體中成員從居住地到工作地的平均用時(shí).某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當(dāng)中()的成員自駕時(shí),自駕群體的人均通勤時(shí)間為(單位:分鐘),而公交群體的人均通勤時(shí)間不受影響,恒為分鐘,試根據(jù)上述分析結(jié)果回答下列問(wèn)題:
(1)當(dāng)在什么范圍內(nèi)時(shí),公交群體的人均通勤時(shí)間少于自駕群體的人均通勤時(shí)間?
(2)求該地上班族的人均通勤時(shí)間的表達(dá)式;討論的單調(diào)性,并說(shuō)明其實(shí)際意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若存在實(shí)數(shù),對(duì)任意實(shí)數(shù),使不等式恒成立,則實(shí)數(shù)的取值范圍為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,幾何體中,四邊形為菱形,,,面∥面,、、都垂直于面,且,為的中點(diǎn),為的中點(diǎn).
(1)求證:為等腰直角三角形;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓心為的圓過(guò)原點(diǎn),且直線與圓相切于點(diǎn).
(1)求圓的方程;
(2)已知過(guò)點(diǎn)的直線的斜率為,且直線與圓相交于兩點(diǎn).
①若,求弦的長(zhǎng);
②若圓上存在點(diǎn),使得成立,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為定義域R上的奇函數(shù),且在R上是單調(diào)遞增函數(shù),函數(shù),數(shù)列為等差數(shù)列,且公差不為0,若,則( )
A. 45B. 15C. 10D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】莫言是中國(guó)首位獲得諾貝爾文學(xué)獎(jiǎng)的文學(xué)家,國(guó)人歡欣鼓舞。某高校文學(xué)社從男女生中各抽取50名同學(xué)調(diào)查對(duì)莫言作品的了程度,結(jié)果如下:
閱讀過(guò)莫言的作品數(shù)(篇) | 0~25 | 26~50 | 51~75 | 76~100 | 101~130 |
男生 | 3 | 6 | 11 | 18 | 12 |
女生 | 4 | 8 | 13 | 15 | 10 |
(1)試估計(jì)該學(xué)校學(xué)生閱讀莫言作品超過(guò)50篇的概率.
(2)對(duì)莫言作品閱讀超過(guò)75篇的則稱為“對(duì)莫言作品非常了解”,否則為“一般了解”,根據(jù)題意完成下表,并判斷能否有的把握認(rèn)為“對(duì)莫言作品的非常了解”與性別有關(guān)?
非常了解 | 一般了解 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
注:K2=
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中,角所對(duì)的邊分別為,滿足.
(1)求的大小;
(2)如圖,,在直線的右側(cè)取點(diǎn),使得.當(dāng)角為何值時(shí),四邊形面積最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的六面體中,面是邊長(zhǎng)為2的正方形,面是直角梯形,,.
(1)求證:平面;
(2)若二面角為60°,求直線和平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com