如圖,在正方體ABCD-A1B1C1D1中,AB=2,點(diǎn)E為AD的中點(diǎn),點(diǎn)F在CD上.若EF∥平面AB1C,則線段EF的長度等于________.
由于在正方體ABCD-A1B1C1D1中,AB=2,∴AC=2.又E為AD中點(diǎn),EF∥平面AB1C,EF?平面ADC,平面ADC∩平面AB1C=AC,∴EF∥AC,∴F為DC中點(diǎn),
∴EF=AC=.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖幾何體中,四邊形ABCD為矩形,AB=3BC=6,EF =4,BF=CF=AE=DE=2,  EF∥AB,G為FC的中點(diǎn),M為線段CD上的一點(diǎn),且CM =2.
(1)證明:平面BGM⊥平面BFC;
(2)求三棱錐F-BMC的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,⊥底面,底面  
為正方形,,分別是,的 中點(diǎn).
(1)求證:平面;
(2)求證:;
(3)若是線段上一動點(diǎn),試確定點(diǎn)位置,
使平面,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,底面是矩形,平面,,,依次是的中點(diǎn).

(1)求證:
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,PA⊥平面ABCD,四邊形ABCD是矩形,PA=AB=1,PD與平面ABCD所成角是30°,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在矩形ABCD的邊BC上移動.
(Ⅰ)證明:無論點(diǎn)E在邊BC的何處,都有PE⊥AF;
(Ⅱ)當(dāng)CE等于何值時,二面角P-DE-A的大小為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知二面角α-AB-β為120°,AC?α,BD?β,且AC⊥AB,BD⊥AB,AB=AC=BD=a,則CD的長為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

邊長為4的正四面體P-ABC中,E為PA的中點(diǎn),則平面EBC與平面ABC所成銳二面角的余弦值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知平面α,β和直線m,給出下列條件:①m∥α;②m⊥α;③m?α;④α⊥β;⑤α∥β.
(1)當(dāng)滿足條件________時,有m∥β;
(2)當(dāng)滿足條件________時,有m⊥β(填所選條件的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱柱中,側(cè)棱垂直于底面,,、分別為、的中點(diǎn).
(1)求證:平面平面;
(2)求證:平面;
(3)求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊答案