【題目】已知,),的圖象上相鄰兩條對(duì)稱軸之間的距離為

1)求函數(shù)的單調(diào)遞增區(qū)間;

2)若的內(nèi)角,,的對(duì)邊分別為,,且,,,求,的值及邊上的中線.

【答案】1.(2,

【解析】

1)由平面向量數(shù)量積的坐標(biāo)運(yùn)算,結(jié)合降冪公式及輔助角公式化簡(jiǎn)三角函數(shù)式,根據(jù)鄰兩條對(duì)稱軸之間的距離求得,即可得函數(shù)解析式,結(jié)合正弦函數(shù)的圖象與性質(zhì)即可求得的單調(diào)遞增區(qū)間;

2)由代入解析式可得的值;由正弦定理與余弦定理,代入已知條件可得的值;設(shè)AC邊上的中線為BD,由,結(jié)合平面向量數(shù)量積定義即可求得,即為邊上的中線長(zhǎng).

1)由平面向量數(shù)量積的坐標(biāo)運(yùn)算,結(jié)合降冪公式及輔助角公式化簡(jiǎn)可得

的圖象上相鄰兩條對(duì)稱軸之間的距離為得,,

所以

得,

所以的單調(diào)遞增區(qū)間為

2

解得,

,

由余弦定理可知,代入可得

解得,

AC邊上的中線為BD,

所以,即邊上的中線為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知菱形ABCD中,∠BAD=60°ACBD相交于點(diǎn)O.將△ABD沿BD折起,使頂點(diǎn)A至點(diǎn)M,在折起的過(guò)程中,下列結(jié)論正確的是(

A.BDCM

B.存在一個(gè)位置,使△CDM為等邊三角形

C.DMBC不可能垂直

D.直線DM與平面BCD所成的角的最大值為60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A,B關(guān)于坐標(biāo)原點(diǎn)O對(duì)稱,,以M為圓心的圓過(guò)A,B兩點(diǎn),且與直線相切,若存在定點(diǎn)P,使得當(dāng)A運(yùn)動(dòng)時(shí),為定值,則點(diǎn)P的坐標(biāo)為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年春節(jié)假期,旅游過(guò)年持續(xù)火爆.特別是:東北雪鄉(xiāng)、夢(mèng)回大唐、江南水鄉(xiāng)、三亞之行這四條路線受到廣大人民的熱播.現(xiàn)有2個(gè)家庭準(zhǔn)備去這四個(gè)地方旅游,假設(shè)每個(gè)家庭均從這四條路線中任意選取一條路線去旅源,則兩個(gè)家庭選擇同一路線的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線E過(guò)點(diǎn),過(guò)拋物線E上一點(diǎn)作兩直線PM,PN與圓C相切,且分別交拋物線EM、N兩點(diǎn).

(1)求拋物線E的方程,并求其焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;

(2)若直線MN的斜率為,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)的坐標(biāo)分別為,.三角形的兩條邊所在直線的斜率之積是.

1)求點(diǎn)的軌跡方程;

2)設(shè)直線方程為,直線方程為,直線,點(diǎn),關(guān)于軸對(duì)稱,直線軸相交于點(diǎn).的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某區(qū)2018年房地產(chǎn)價(jià)格因棚戶區(qū)改造實(shí)行貨幣化補(bǔ)償,使房?jī)r(jià)快速走高,為抑制房?jī)r(jià)過(guò)快上漲,政府從20192月開(kāi)始采用實(shí)物補(bǔ)償方式(以房換房),3月份開(kāi)始房?jī)r(jià)得到很好的抑制,房?jī)r(jià)漸漸回落,以下是20192月后該區(qū)新建住宅銷售均價(jià)的數(shù)據(jù):

月份

3

4

5

6

7

價(jià)格(百元/平方米)

83

82

80

78

77

1)研究發(fā)現(xiàn),3月至7月的各月均價(jià)(百元/平方米)與月份之間具有較強(qiáng)的線性相關(guān)關(guān)系,求價(jià)格(百元/平方米)關(guān)于月份的線性回歸方程;

2)用表示用(1)中所求的線性回歸方程得到的與對(duì)應(yīng)的銷售均價(jià)的估計(jì)值,3月份至7月份銷售均價(jià)估計(jì)值與實(shí)際相應(yīng)月份銷售均價(jià)差的絕對(duì)值記為,即,.,則將銷售均價(jià)的數(shù)據(jù)稱為一個(gè)好數(shù)據(jù),現(xiàn)從5個(gè)銷售均價(jià)數(shù)據(jù)中任取2個(gè),求抽取的2個(gè)數(shù)據(jù)均是好數(shù)據(jù)的概率.

參考公式:回歸方程系數(shù)公式,;參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了貫徹落實(shí)黨中央精準(zhǔn)扶貧決策,某市將其低收入家庭的基本情況經(jīng)過(guò)統(tǒng)計(jì)繪制如圖,其中各項(xiàng)統(tǒng)計(jì)不重復(fù).若該市老年低收入家庭共有900戶,則下列說(shuō)法錯(cuò)誤的是( 。

A.該市總有 15000 戶低收入家庭

B.在該市從業(yè)人員中,低收入家庭共有1800戶

C.在該市無(wú)業(yè)人員中,低收入家庭有4350戶

D.在該市大于18歲在讀學(xué)生中,低收入家庭有 800 戶

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在等腰梯形中,兩腰,底邊的三等分點(diǎn),的中點(diǎn).分別沿將四邊形折起,使重合于點(diǎn),得到如圖2所示的幾何體.在圖2中,分別為的中點(diǎn).

(1)證明:平面

(2)求幾何體的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案