19.某幾何體的三視圖如圖所示,則該幾何體的體積是$\frac{π}{3}$+$\frac{4}{3}$.

分析 由三視圖可得,直觀圖是半個圓錐與三棱錐的組合體,由圖中數(shù)據(jù),可得幾何體的體積.

解答 解:由三視圖可得,直觀圖是半個圓錐與三棱錐的組合體,
由圖中數(shù)據(jù),可得V=$\frac{1}{2}×\frac{1}{3}π×{1}^{2}×\sqrt{5-1}$+$\frac{1}{3}×\frac{1}{2}×2×2×\sqrt{5-1}$=$\frac{π}{3}$+$\frac{4}{3}$,
故答案為$\frac{π}{3}$+$\frac{4}{3}$.

點評 本題考查由三視圖求幾何體的體積,考查數(shù)形結合的數(shù)學思想,正確得出直觀圖是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

9.已知向量$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$是共面的三個向量,其中$\overrightarrow{a}$=($\sqrt{2}$,2),|$\overrightarrow$|=2$\sqrt{3}$,|$\overrightarrow{c}$|=2$\sqrt{6}$,$\overrightarrow{a}$∥$\overrightarrow{c}$.
(Ⅰ)求|$\overrightarrow{c}$-$\overrightarrow{a}$|;
(Ⅱ)若$\overrightarrow{a}$-$\overrightarrow$與3$\overrightarrow{a}$+2$\overrightarrow$垂直,求$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖1,ABCD為長方形,AB=3,AD=$\sqrt{2}$,E,F(xiàn)分別是邊AB,CD上的點,且AE=CF=1,DE與AF相交于點G,將三角形ADF沿AF折起至ADF',使得D'E=1,如圖2.
(1)求證:平面D'EG⊥ABCF平面;
(2)求三棱錐D'-BEG的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.曲線y=2xtanx在點x=$\frac{π}{4}$處的切線方程是(2+π)x-y-$\frac{{π}^{2}}{4}$=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.為了得到函數(shù)y=1-2sin2(x-$\frac{π}{12}$)的圖象,可以將函數(shù)y=sin2x的圖象( 。
A.向左平移$\frac{π}{3}$個單位長度B.向右平移$\frac{π}{6}$個單位長度
C.向右平移$\frac{π}{3}$個單位長度D.向左平移$\frac{π}{6}$個單位長度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知p:冪函數(shù)y=(m2-m-1)xm在(0,+∞)上單調遞增;q:|m-2|<1,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,在四棱錐P-ABCD中,底面ABCD是矩形,點E、F分別是棱PC和PD的中點.
(1)求證:EF∥平面PAB;
(2)若AP=AD,且平面PAD⊥平面ABCD,證明:AF⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.正四棱柱ABCD-A1B1C1D1中,AA1=2AB,則AD1與平面BB1D1所成角的正弦值為( 。
A.$\frac{\sqrt{10}}{10}$B.$\frac{3\sqrt{10}}{10}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.把89化成二進制數(shù)使( 。
A.100100B.10010C.10100D.1011001

查看答案和解析>>

同步練習冊答案