5.某商場計劃在今年同時出售智能手機和變頻空調(diào),兩種市場銷售情況很好(有多少就能賣多少)的新產(chǎn)品,
一次該商場要根據(jù)實際情況(如資金、勞動力(工資)等)準備好月資金工藝量,以使每月的總利潤達到最大,通過一個月的市場調(diào)查,得到銷售這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如表:
資金產(chǎn)品所需資金(百元/臺)月資金供應(yīng)量(百元)
手機空調(diào)
成本4030600
勞動力(工資)2558
利潤1110
怎樣確定這兩種產(chǎn)品的月供應(yīng)量,才能使每月的總利潤最大,總利潤的最大值是多少百元?

分析 利用已知條件找出約束條件與目標函數(shù),準確地描畫可行域,再利用圖形目標函數(shù)的幾何意義求得滿足題設(shè)的最優(yōu)解.

解答 解:設(shè)手機和空調(diào)的月供應(yīng)量分別是x、y臺,總利潤是z百元,則z=11x+10y,
由題意有:$\left\{\begin{array}{l}{40x+30y≤600}\\{2x+5y≤58}\\{x,y∈{N}^{+}}\end{array}\right.$.由$\left\{\begin{array}{l}{4x+3y=60}\\{2x+5y=58}\end{array}\right.$,可得$\left\{\begin{array}{l}{x=9}\\{y=8}\end{array}\right.$即M(9,8)
由圖知:z=11x+10y直線y=-$\frac{11}{10}$x+$\frac{1}{10}$z,當(dāng)直線經(jīng)過M(9,8)時,縱截距最大.
這時z也取最大值zmax=11×9+10×8=179(百元).
故當(dāng)月供應(yīng)量為手機9臺,空調(diào)8臺時,可獲得最大利潤179百元.

點評 用圖解法解決線性規(guī)劃問題時,分析題目的已知條件,找出約束條件和目標函數(shù)是關(guān)鍵,可先將題目中的量分類、列出表格,理清頭緒,然后列出不等式組(方程組)尋求約束條件,并就題目所述找出目標函數(shù).判斷幾何意義,即可得到目標函數(shù)的最優(yōu)解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知$a={5^{{{log}_3}3.4}},b={5^{{{log}_4}3.6}},c={(\frac{1}{5})^{{{log}_3}0.3}}$,則( 。
A.c>a>bB.b>a>cC.b>a>cD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的離心率為2,且兩條漸近線與拋物線y2=2px(p>0)的準線交于A,B兩點,O為坐標原點,若${S_{△AOB}}=\sqrt{3}$,則拋物線的方程為y2=4x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.圓C:x2+y2+2x+4y=0的圓心到直線3x+4y=4的距離d=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$+alnx-bx,a,b為實數(shù).
(1)當(dāng)b=0時,求函數(shù)f(x)的值域;
(2)當(dāng)a=b=-1時,若a∈(1,e],求證:對任意s,t∈[1,a]恒有|f(s)-f(t)|<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的上頂點為B,右焦點為F,∠OFB=30°,P為線段BF的中點,且線段OP長為1.
(Ⅰ)試確定橢圓C的方程;
(Ⅱ)若直線l與圓E:x2+y2=3相切且交橢圓C于M,N兩點,求△OMN面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.過圓C:(x-4)2+(y+1)2=25上的點M(0,2)作其切線l,且與直線l′:4x-ay+2=0平行,則l′與l間的距離是( 。
A.$\frac{8}{5}$B.$\frac{4}{5}$C.$\frac{28}{5}$D.$\frac{12}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.命題“若a2+b2=0,則a=b=0”的逆否命題是( 。
A.若a≠b≠0,則a2+b2≠0B.若a=b≠0,則a2+b2≠0
C.若a≠0且b≠0,則a2+b2≠0D.若a≠0或b≠0,則a2+b2≠0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.“a<0”是函數(shù)“函數(shù)f(x)=|x-a|+|x|在區(qū)間[0,+∞)上為增函數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案