【題目】設直線與拋物線相交于不同兩點、,與圓相切于點,且為線段中點.
(1) 若是正三角形(是坐標原點),求此三角形的邊長;
(2) 若,求直線的方程;
(3) 試對進行討論,請你寫出符合條件的直線的條數(shù)(直接寫出結論).
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓與圓: 相切,且與圓: 相內(nèi)切,記圓心的軌跡為曲線.設為曲線上的一個不在軸上的動點, 為坐標原點,過點作的平行線交曲線于, 兩個不同的點.
(Ⅰ)求曲線的方程;
(Ⅱ)試探究和的比值能否為一個常數(shù)?若能,求出這個常數(shù),若不能,請說明理由;
(Ⅲ)記的面積為, 的面積為,令,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知以為圓心的圓的方程為: ,以為圓心的圓的方程為: .
(1)若過點的直線沿軸向左平移3個單位,沿軸向下平移4個單位后,回到原來的位置,求直線被圓截得的弦長;
(2)圓是以1為半徑,圓心在圓: 上移動的動圓 ,若圓上任意一點分別作圓的兩條切線,切點為,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△OAB的頂點坐標為O(0,0),A(2,9),B(6,﹣3),點P的橫坐標為14,且 ,點Q是邊AB上一點,且 .
(1)求實數(shù)λ的值與點P的坐標;
(2)求點Q的坐標;
(3)若R為線段OQ上的一個動點,試求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖, 、分別為直角三角形的直角邊和斜邊的中點,沿將折起到的位置,連結、, 為的中點.
(1)求證: 平面;(2)求證:平面平面;
(3)求證: 平面.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)的定義域是,對于以下四個命題:
(1) 若是奇函數(shù),則也是奇函數(shù);
(2) 若是周期函數(shù),則也是周期函數(shù);
(3) 若是單調遞減函數(shù),則也是單調遞減函數(shù);
(4) 若函數(shù)存在反函數(shù),且函數(shù)有零點,則函數(shù)也有零點.
其中正確的命題共有
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an},{bn}滿足a1=1,an+1=2an+1,b1=4,bn﹣bn﹣1=an+1(n≥2).
(1)求證:數(shù)列{an+1}是等比數(shù)列;
(2)求數(shù)列{an},{bn}的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示, 是某海灣旅游區(qū)的一角,其中,為了營造更加優(yōu)美的旅游環(huán)境,旅游區(qū)管委會決定在直線海岸和上分別修建觀光長廊和AC,其中是寬長廊,造價是元/米, 是窄長廊,造價是元/米,兩段長廊的總造價為120萬元,同時在線段上靠近點的三等分點處建一個觀光平臺,并建水上直線通道(平臺大小忽略不計),水上通道的造價是元/米.
(1) 若規(guī)劃在三角形區(qū)域內(nèi)開發(fā)水上游樂項目,要求的面積最大,那么和的長度分別為多少米?
(2) 在(1)的條件下,建直線通道還需要多少錢?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱柱中,底面,底面為菱形,為與交點,已知,.
(I)求證:平面.
(II)在線段上是否存在一點,使得平面,如果存在,求的值,如果不存在,請說明理由.
(III)設點在內(nèi)(含邊界),且,求所有滿足條件的點構成的圖形,并求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com