正方體ABCD-A1B1C1D1的棱長為a,求A1C1和平面AB1C間的距離.

答案:
解析:

  解法1:如圖所示,A1C1∥平面AB1C,又平面BB1DD1⊥平面AB1C.

  故若過O1作O1E⊥OB1于E,則OE1⊥平面AB1C,O1E為所求的距離

  由O1E·OB1=O1B1·OO1,

  可得:O1E=

  解法2:轉(zhuǎn)化為求C1到平面AB1C的距離,也就是求三棱錐C1-AB1C的高h(yuǎn).

  由V=V,可得h=a.

  解法3:因平面AB1C∥平面C1DA1,它們間的距離即為所求,連BD1,分別交B1O、DO1與F、G(圖中未畫出).易證BD1垂直于上述兩個平面,故FG長即為所求,易求得

  FG=

  點評(1)求線面距離的先決條件是線面平行,而求線面距離的常用方法是把它們轉(zhuǎn)化為求點面之間的距離,有時也可轉(zhuǎn)化為求面面距離,從本題的解法也可悟出求異面直線之間的距離的思路.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在棱長為1的正方體ABCD-A1B1C1D1中.
(1)求:點A到平面BD1的距離;
(2)求點A1到平面AB1D1的距離;
(3)求平面AB1D1與平面BC1D的距離;
(4)求直線AB到CDA1B1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1的棱長為a.
求:
(1)二面角A-BD-A1的正切值;
(2)AA1與平面A1BD所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•河?xùn)|區(qū)一模)已知:正方體ABCD-A1B1C1D1的棱長為1.
(Ⅰ)求棱AA1與平面A1BD所成的角;
(Ⅱ)求二面角B-A1D-B1的大小;
(Ⅲ)求四面體A1-BB1D的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若棱長為1的正方體ABCD-A1B1C1D1 的八個頂點都在球O的表面上,則A,A1兩點之間的球面距離為
3
2
arccos
1
3
3
2
arccos
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆云南省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

正方體ABCD-A1 B1 C1 D1中,BB1與平面ACD1所成角的余弦值為    (        )

 (A)                    (B)             (C)           (D)

 

查看答案和解析>>

同步練習(xí)冊答案