【題目】如圖,已知圓O的內(nèi)接四邊形BCED,BC為圓O的直徑,BC=2,延長CB,ED交于A點,使得∠DOB=∠ECA,過A作圓O的切線,切點為P,

(1)求證:BD=DE;
(2)若∠ECA=45°,求AP2的值.

【答案】
(1)證明:連結(jié)OE,∵圓O的內(nèi)接四邊形BCED,BC為圓O的直徑,

BC=2,延長CB,ED交于A點,使得∠DOB=∠ECA,

∴CE∥OD,∴∠CEO=∠EOD,

∵CO=EO,∴∠OCE=∠OEC,

∴∠BOD=∠EOD,

∴BD=DE.


(2)解:解:(2)∵∠ECA=45°,BC為圓O的直徑,BC=2,

∴∠COE=90°,∴CE= ,OD=1,

∵OD∥CE,∴ = ,解得AB= ,

∵過A作圓O的切線,切點為P,

∴AP2=AB(AB+2)= =2+2


【解析】(1)連結(jié)OE,由已知得CE∥OD,從而∠BOD=∠EOD,由此能證明BD=DE.(2)推導(dǎo)出∠COE=90°,CE= ,OD=1,AB= ,由此利用切割線定理能求出AP2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)在開學(xué)季準備銷售一種盒飯進行試創(chuàng)業(yè),在一個開學(xué)季內(nèi),每售出1盒該盒飯獲利潤10元,未售出的產(chǎn)品,每盒虧損5元.根據(jù)歷史資料,得到開學(xué)季市場需求量的頻率分布直方圖,如圖所示.該同學(xué)為這個開學(xué)季購進了150盒該產(chǎn)品,以x(單位:盒,)表示這個開學(xué)季內(nèi)的市場需求量,y(單位:元)表示這個開學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤.

(1)根據(jù)直方圖估計這個開學(xué)季內(nèi)市場需求量x的平均數(shù)和眾數(shù);

(2)將y表示為x的函數(shù);

(3)根據(jù)頻率分布直方圖估計利潤y不少于1050元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知三棱柱A1B1C1﹣ABC中,側(cè)棱與底面垂直,AB=BC=AA1 , ∠ABC=90°,M是BC的中點.

(1)求證:A1B∥平面AMC1
(2)求平面A1B1M與平面AMC1所成角的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,輸出的結(jié)果為1538,則判斷框內(nèi)可填入的條件為(

A.n>6?
B.n>7?
C.n>8?
D.n>9?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正三棱柱ABC A 1B1C1的側(cè)棱長和底面邊長均為2,DBC 的中點.

(1) 求證:AD⊥平面B1BC C1;

(2) 求證:A 1B//平面ADC1;

(3) 求三棱錐C1 ADB1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分)已知橢圓的左焦點為,過的直線交于、兩點.

)求橢圓的離心率.

)當(dāng)直線軸垂直時,求線段的長.

)設(shè)線段的中點為,為坐標原點,直線交橢圓交于、兩點,是否存在直線使得?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓=1(a>b>0)上的點P到左,右兩焦點F1,F2的距離之和為2,離心率為.

(1)求橢圓的標準方程;

(2)過右焦點F2的直線l交橢圓于AB兩點,若y軸上一點M(0,)滿足|MA|=|MB|,求直線l的斜率k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】石嘴山三中最強大腦社對高中學(xué)生的記憶力x和判斷力y進行統(tǒng)計分析,得下表數(shù)據(jù)

x

6

8

10

12

y

2

3

5

6

(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程 ,預(yù)測記憶力為9的同學(xué)的判斷力.

(2)若記憶力增加5個單位,預(yù)測判斷力增加多少個單位?

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱ABC﹣A1B1C1中,AC=BC= AA1 , D是棱AA1的中點,DC1⊥BD

(1)證明:DC1⊥BC;
(2)求二面角A1﹣BD﹣C1的大。

查看答案和解析>>

同步練習(xí)冊答案