17.已知z-|z|=-1+i,則復數(shù)z=i.

分析 設z=a+bi,(a,b∈R),根據(jù)復數(shù)模,由已知得出關于a,b的方程組,求出a,b后即得出z.

解答 解:設z=a+bi,
由z-|z|=-1+i,
得a+bi-$\sqrt{{a}^{2}+^{2}}$=-1+i,
則b=1,a-$\sqrt{{a}^{2}+^{2}}$=-1,
解得a=0,
故z=i,
故答案為:i.

點評 本題考查復數(shù)的求解計算,考查了復數(shù)模,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.已知數(shù)列{an}滿足:對于任意n∈N*且n≥2時,an+λan-1=2n+1,a1=4.
(1)若$λ=-\frac{1}{3}$,求證:{an-3n}為等比數(shù)列;
(2)若λ=-1.①求數(shù)列{an}的通項公式;
②是否存在k∈N*,使得$\sqrt{{a}_{2k}{a}_{2k+1}}$+25為數(shù)列{an}中的項?若存在,求出所有滿足條件的k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設A(x1,y1),B(x2,y2)兩點在拋物線y=2x2上,l是AB的垂直平分線,
(Ⅰ)當且僅當x1+x2取何值時,直線l經(jīng)過拋物線的焦點F?證明你的結論;
(Ⅱ)若OA⊥OB,弦AB是否過定點,若過定點,求出該定點,若不過定點,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知等差數(shù)列{an},Sn為數(shù)列{an}的前n項和,若Sn=an2+4n+a-4(a∈R),則實數(shù)a的值為( 。
A.0B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.有正整數(shù)組成的等差數(shù)列{an}和{bn}的前n項分別是Sn和Tn,且$\frac{{a}_{n}}{_{n}}$=$\frac{2n-1}{3n+1}$,則$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n}{3n+5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知拋物線C:x2=2py(p>0)在點P(4,4)處的切線經(jīng)過橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右焦點E,橢圓C1的短軸長與拋物線C的焦距相等.
(1)求拋物線C和橢圓C1的方程;
(2)經(jīng)過橢圓C1左焦點F的直線l與橢圓C1交于A,B兩點,是否存在定點D,使得無論AB怎樣運動,都有∠ADF=∠BDE?若存在,求出D的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知集合A={1,2,3,4,5},集合B={x∈Z|x2-4x-5<0},則A∩B的元素個數(shù)為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.下列關系中,正確的個數(shù)為(  )
①$\frac{1}{2}$∈R  
②$\sqrt{2}$∉Q  
③|-3|∈N+  
④|-$\sqrt{3}$|∈Q.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.求值 cos20°cos40°cos60°cos80°=$\frac{1}{16}$.

查看答案和解析>>

同步練習冊答案