【題目】已知函數(shù).
(1)若,證明:當(dāng)時(shí),;當(dāng)時(shí),;
(2)若是的極大值點(diǎn),求.
【答案】(1)見(jiàn)解析
(2)
【解析】分析:(1)求導(dǎo),利用函數(shù)單調(diào)性證明即可。
(2)分類討論和,構(gòu)造函數(shù),討論的性質(zhì)即可得到a的范圍。
詳解:(1)當(dāng)時(shí),,.
設(shè)函數(shù),則.
當(dāng)時(shí),;當(dāng)時(shí),.故當(dāng)時(shí),,且僅當(dāng)時(shí),,從而,且僅當(dāng)時(shí),.
所以在單調(diào)遞增.
又,故當(dāng)時(shí),;當(dāng)時(shí),.
(2)(i)若,由(1)知,當(dāng)時(shí),,這與是的極大值點(diǎn)矛盾.
(ii)若,設(shè)函數(shù).
由于當(dāng)時(shí),,故與符號(hào)相同.
又,故是的極大值點(diǎn)當(dāng)且僅當(dāng)是的極大值點(diǎn).
.
如果,則當(dāng),且時(shí),,故不是的極大值點(diǎn).
如果,則存在根,故當(dāng),且時(shí),,所以不是的極大值點(diǎn).
如果,則.則當(dāng)時(shí),;當(dāng)時(shí),.所以是的極大值點(diǎn),從而是的極大值點(diǎn)
綜上,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等差數(shù)列的公差不為0,是其前項(xiàng)和,給出下列命題:
①若,且,則和都是中的最大項(xiàng);
②給定,對(duì)一切,都有;
③若,則中一定有最小項(xiàng);
④存在,使得和同號(hào).
其中正確命題的個(gè)數(shù)為( )
A.4B.3C.2D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為提高城市居民生活幸福感,某城市公交公司大力確保公交車的準(zhǔn)點(diǎn)率,減少居民乘車候車時(shí)間為此,該公司對(duì)某站臺(tái)乘客的候車時(shí)間進(jìn)行統(tǒng)計(jì)乘客候車時(shí)間受公交車準(zhǔn)點(diǎn)率、交通擁堵情況、節(jié)假日人流量增大等情況影響在公交車準(zhǔn)點(diǎn)率正常、交通擁堵情況正常、非節(jié)假日的情況下,乘客候車時(shí)間隨機(jī)變量滿足正態(tài)分布在公交車準(zhǔn)點(diǎn)率正常、交通擁堵情況正常、非節(jié)假日的情況下,調(diào)查了大量乘客的候車時(shí)間,經(jīng)過(guò)統(tǒng)計(jì)得到如圖頻率分布直方圖.
(1)在直方圖各組中,以該組區(qū)間的中點(diǎn)值代表該組中的各個(gè)值,試估計(jì)的值;
(2)在統(tǒng)計(jì)學(xué)中,發(fā)生概率低于千分之三的事件叫小概率事件,一般認(rèn)為,在正常情況下,一次試驗(yàn)中,小概率事件是不能發(fā)生的在交通擁堵情況正常、非節(jié)假日的某天,隨機(jī)調(diào)查了該站的10名乘客的候車時(shí)間,發(fā)現(xiàn)其中有3名乘客候車時(shí)間超過(guò)15分鐘,試判斷該天公交車準(zhǔn)點(diǎn)率是否正常,說(shuō)明理由.
(參考數(shù)據(jù):,,,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,點(diǎn)E、F、G分別為棱A1D1、A1A、A1B1的中點(diǎn),給出下列四個(gè)命題:①EF⊥B1C;②BC1∥平面EFG;③A1C⊥平面EFG;④異面直線FG、B1C所成角的大小為.其中正確命題的序號(hào)為( )
A.①②B.②③C.①②③D.①②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】武漢某科技公司為提高市場(chǎng)銷售業(yè)績(jī),現(xiàn)對(duì)某產(chǎn)品在部分營(yíng)銷網(wǎng)點(diǎn)進(jìn)行試點(diǎn)促銷活動(dòng).現(xiàn)有兩種活動(dòng)方案,在每個(gè)試點(diǎn)網(wǎng)點(diǎn)僅采用一種活動(dòng)方案,經(jīng)統(tǒng)計(jì),2018年1月至6月期間,每件產(chǎn)品的生產(chǎn)成本為10元,方案1中每件產(chǎn)品的促銷運(yùn)作成本為5元,方案2中每件產(chǎn)品的促銷運(yùn)作成本為2元,其月利潤(rùn)的變化情況如圖①折線圖所示.
(1)請(qǐng)根據(jù)圖①,從兩種活動(dòng)方案中,為該公司選擇一種較為有利的活動(dòng)方案(不必說(shuō)明理由);
(2)為制定本年度該產(chǎn)品的銷售價(jià)格,現(xiàn)統(tǒng)計(jì)了8組售價(jià)xi(單位:元/件)和相應(yīng)銷量y(單位:件)(i=1,2,…8)并制作散點(diǎn)圖(如圖②),觀察散點(diǎn)圖可知,可用線性回歸模型擬合y與x的關(guān)系,試求y關(guān)于x的回歸方程(系數(shù)精確到整數(shù));
參考公式及數(shù)據(jù):40,660,xiyi=206630,x12968,,,
(3)公司策劃部選1200lnx+5000和═x3+1200兩個(gè)模型對(duì)銷量與售價(jià)的關(guān)系進(jìn)行擬合,現(xiàn)得到以下統(tǒng)計(jì)值(如表格所示):
x3+1200 | ||
52446.95 | 122.89 | |
124650 | ||
相關(guān)指數(shù) | R | R |
相關(guān)指數(shù):R2=1.
(i)試比較R12,R22的大小(給出結(jié)果即可),并由此判斷哪個(gè)模型的擬合效果更好;
(ii)根據(jù)(1)中所選的方案和(i)中所選的回歸模型,求該產(chǎn)品的售價(jià)x定為多少時(shí),總利潤(rùn)z可以達(dá)到最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】第7屆世界軍人運(yùn)動(dòng)會(huì)于2019年10月18日至27日在湖北武漢舉行,賽期10天,共設(shè)置射擊、游泳、田徑、籃球等27個(gè)大項(xiàng),329個(gè)小項(xiàng).共有來(lái)自100多個(gè)國(guó)家的近萬(wàn)名現(xiàn)役軍人同臺(tái)競(jìng)技.前期為迎接軍運(yùn)會(huì)順利召開(kāi),武漢市很多單位和部門(mén)都開(kāi)展了豐富多彩的宣傳和教育活動(dòng),努力讓大家更多的了解軍運(yùn)會(huì)的相關(guān)知識(shí),并倡議大家做文明公民.武漢市體育局為了解廣大民眾對(duì)軍運(yùn)會(huì)知識(shí)的知曉情況,在全市開(kāi)展了網(wǎng)上問(wèn)卷調(diào)查,民眾參與度極高,現(xiàn)從大批參與者中隨機(jī)抽取200名幸運(yùn)參與者,他們得分(滿分100分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如下:
組別 | |||||||
頻數(shù) | 5 | 30 | 40 | 50 | 45 | 20 | 10 |
(1)若此次問(wèn)卷調(diào)查得分整體服從正態(tài)分布,用樣本來(lái)估計(jì)總體,設(shè),分別為這200人得分的平均值和標(biāo)準(zhǔn)差(同一組數(shù)據(jù)用該區(qū)間中點(diǎn)值作為代表),求,的值(,的值四舍五入取整數(shù)),并計(jì)算;
(2)在(1)的條件下,為感謝大家參與這次活動(dòng),市體育局還對(duì)參加問(wèn)卷調(diào)查的幸運(yùn)市民制定如下獎(jiǎng)勵(lì)方案:得分低于的可以獲得1次抽獎(jiǎng)機(jī)會(huì),得分不低于的可獲得2次抽獎(jiǎng)機(jī)會(huì),在一次抽獎(jiǎng)中,抽中價(jià)值為15元的紀(jì)念品A的概率為,抽中價(jià)值為30元的紀(jì)念品B的概率為.現(xiàn)有市民張先生參加了此次問(wèn)卷調(diào)查并成為幸運(yùn)參與者,記Y為他參加活動(dòng)獲得紀(jì)念品的總價(jià)值,求Y的分布列和數(shù)學(xué)期望,并估算此次紀(jì)念品所需要的總金額.
(參考數(shù)據(jù):;;.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓的左、右頂點(diǎn)分別為.右焦點(diǎn)為,過(guò)點(diǎn)且斜率為的直線交橢圓于另一點(diǎn).
(1)求橢圓的離心率;
(2)若,設(shè)直線,延長(zhǎng)交直線于點(diǎn),線段的中點(diǎn)為,求證:點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)在直線上
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019舉國(guó)上下以各種不同的形式共慶新中國(guó)成立70周年,某商家計(jì)劃以“我和我的祖國(guó)"為主題舉辦一次有獎(jiǎng)消費(fèi)活動(dòng),此商家先把某品牌酒重新包裝,包裝時(shí)在每瓶酒的包裝盒底部隨機(jī)印上“中"國(guó)"“夢(mèng)”三個(gè)字樣中的一個(gè),之后隨機(jī)裝箱(1箱4瓶),并規(guī)定:若顧客購(gòu)買的一箱酒中的四瓶酒底部所印的字為同一個(gè)字,則此顧客獲得一等獎(jiǎng),此箱灑可優(yōu)惠36元;若顧客購(gòu)買的一箱酒的四瓶灑底部集齊了“中"“國(guó)"二字且僅有此二字,則此顧客獲得二等獎(jiǎng),此箱灑可優(yōu)惠27元;若顧客購(gòu)買的一箱酒中的四瓶酒的底部集齊了“中”“國(guó)"“夢(mèng)”三個(gè)字,則此顧客獲得三等獎(jiǎng),此箱酒可優(yōu)惠18元(注:每箱單獨(dú)兌獎(jiǎng),箱與箱之間的包裝盒不能混).
(1)①設(shè)為顧客購(gòu)買一箱酒所優(yōu)惠的錢數(shù),求的分布列;
②若不計(jì)其他損耗,商家重新包裝后每箱酒提價(jià)a元,試問(wèn)a取什么范圍時(shí)才能使活動(dòng)后的利潤(rùn)不會(huì)小于搞活動(dòng)之前?
(2)若顧客一次性購(gòu)買3箱酒,并都中獎(jiǎng),可再加贈(zèng)一張《我和我的祖國(guó)》電影票,顧客小張一次性購(gòu)買3箱酒,共優(yōu)惠了72元,試問(wèn)小張能否得到電影票,概率多大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的左焦點(diǎn)為,離心率為,為圓的圓心.
(1)求橢圓的方程;
(2)已知過(guò)橢圓右焦點(diǎn)的直線交橢圓于兩點(diǎn),過(guò)且與垂直的直線與圓交于兩點(diǎn),求四邊形面積的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com