15.在直角坐標系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=sinα+cosα}\\{y=sinα-cosα}\end{array}\right.$ (α為參數(shù))
(1)求曲線C的普通方程;
(2)在以O為極點,x正半軸為極軸的極坐標系中,直線l方程為$\sqrt{2}$ρsin($\frac{π}{4}$-θ)+1=0,已知直線l與曲線C相交于A,B兩點,求|AB|.

分析 (1)把參數(shù)方程中的x,y平方相加即可得普通方程;
(2)把直線l方程為$\sqrt{2}$ρsin($\frac{π}{4}$-θ)+1=0化為普通方程為:x-y+1=0,然后根據(jù)弦長公式計算即可.

解答 解:(1)曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=sinα+cosα}\\{y=sinα-cosα}\end{array}\right.$ (α為參數(shù)),
x,y平方相加可得:x2+y2=2,①
(2)直線l方程為$\sqrt{2}$ρsin($\frac{π}{4}$-θ)+1=0化為普通方程為:x-y+1=0,②
由②得:y=x+1,③
把③帶入①得:2x2+2x-1=0,
∴$\left\{\begin{array}{l}{{x}_{1}{+x}_{2}=-1}\\{{x}_{1}{x}_{2}=\frac{1}{2}}\end{array}\right.$,
∴|AB|=$\sqrt{1+{1}^{2}}$|x1-x2|
=$\sqrt{2}$$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$
=$\sqrt{2}\sqrt{3}$
=$\sqrt{6}$

點評 本題主要考查參數(shù)方程和普通方程的互化以及弦長公式,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

15.函數(shù)y=loga(x-3)+1( a>0,a≠1)的圖象恒過定點坐標(4,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知函數(shù)y=f(x)是定義在R上的增函數(shù),函數(shù)y=f(x-1)的圖象關于點(1,0)對稱.若對任意的x,y∈R,不等式f(x2-6x+21)+f(y2-8y)<0恒成立,求x2+y2的取值范圍是( 。
A.(3,7)B.(9,25)C.(13,49)D.(9,49)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x^2}+{y^2}-2x-2y+1≤0\\|{x-1}|-y≤0\end{array}\right.$,則z=x+2y的最大值為3+$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知x∈[0,1],則函數(shù)y=$\frac{x}{x+1}$的值域是[0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知正方體ABCD-A1B1C1D1,則下列說法不正確的是( 。
A.若點P在直線BC1上運動時,三棱錐A-D1PC的體積不變
B.若點P是平面A1B1C1D1上到點D和C1距離相等的點,則P點的軌跡是過D1點的直線
C.若點P在直線BC1上運動時,直線AP與平面ACD1所成角的大小不變
D.若點P在直線BC1上運動時,二面角P-AD1-C的大小不變

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.等差數(shù)列{an}中,a5=15,則a3+a4+a5+a8的值為( 。
A.30B.45C.60D.120

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.設數(shù)列{an}的前n項和為Sn若S2=4,an+1=1+2Sn,n∈N*,則S5=121.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知△ABC的內角A,B,C所對的邊分別為a,b,c,若sinA=$\frac{1}{3}$,b=$\sqrt{3}$sinB,則a=$\frac{{\sqrt{3}}}{3}$.

查看答案和解析>>

同步練習冊答案