已知F1,F(xiàn)2為橢圓
x2
100
+
y2
b2
=1(0<b<10)的左、右焦點,P是橢圓上一點,若∠F1PF2=60°且△F1PF2的面積為
64
3
3
,橢圓離心率為( 。
A、
3
5
B、
4
5
C、
9
25
D、
16
25
考點:橢圓的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:先根據(jù)橢圓的幾何性質(zhì)求得|F1F2|,設(shè)出|PF1|=t1,|PF2|=t2,利用余弦定理可求得t1t2的值,最后利用三角形面積公式求解即得b,再由a,b,c的關(guān)系,求得c,再由離心率公式即可得到.
解答: 解:設(shè)|PF1|=t1,|PF2|=t2,
則由橢圓的定義可得:t1+t2=2a①
在△F1PF2中∠F1PF2=60°,
所以t12+t22-2t1t2•cos60°=4c2②,
由①2-②得3t1t2=4a2-4c2=4b2
所以S△PF1F2=
1
2
t1t2•sin60°=
1
2
×
1
3
×4b2×
3
2
=
64
3
3
,
∴b=8,c=
100-64
=6,
即有e=
c
a
=
3
5

故選A.
點評:解決此類問題的關(guān)鍵是熟練掌握橢圓的標(biāo)準(zhǔn)方程、橢圓的定義和性質(zhì),熟練利用解三角形的余弦定理和面積公式求解問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知sinA=3cosBcosC,tanBtanC=2,則tan(B+C)的值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f′(x)=-
1
x6
,則f(x)可能為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設(shè)f(x)=
g(x)
x

(1)求a,b的值;
(2)不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,求實數(shù)k的取值范圍;
(3)方程f(|2x-1|)+k(
2
|2x-1|
-3)有三個不同的實數(shù)解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某個幾何體的三視圖如圖,根據(jù)圖中標(biāo)出 的尺寸(單位:cm),則此幾何體的所有側(cè)面的面積中最大的是( 。
A、100
2
cm3
B、100
5
cm3
C、200
2
cm3
D、200
5
cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=mx2-mx-1對于一切實數(shù)x,都有f(x)<0成立,則m的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓的中心在坐標(biāo)原點,焦點F1、F2在x軸上,A1,A2為左右頂點,焦距為2,左準(zhǔn)線l與x軸的交點為M,|MA2|:|A1F1|=6:1.若點P在直線l上運動,且離心率e<
1
2
,則tan∠F1PF2的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=xlnx,則這個函數(shù)的圖象在x=1處的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若向量
a
,
b
滿足|
a
|=|
b
|=2,
a
b
的夾角為60°,則
a
a
+
a
b
=
 

查看答案和解析>>

同步練習(xí)冊答案