【題目】(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程

已知直線的極坐標(biāo)方程為,圓的參數(shù)方程為

(其中為參數(shù)).

)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;

)求圓上的點到直線的距離的最小值.

【答案】(1; (2

【解析】本題考查極坐標(biāo)方程與直角坐標(biāo)方程,參數(shù)方程與普通方程的互化,考查點線距離公式的運用,屬于基礎(chǔ)題.

)以極點為原點,極軸為x軸正半軸建立直角坐標(biāo)系,利用和角的正弦函數(shù),即可求得該直線的直角坐標(biāo)方程;

)圓M的普通方程為:x2+y+22=4,求出圓心M0-2)到直線x+y-1=0的距離,即可得到圓M上的點到直線的距離的最小值.

)以極點為原點,極軸為軸正半軸建立直角坐標(biāo)系. ----------------1

----------------2

所以,該直線的直角坐標(biāo)方程為:----------------3

)圓的普通方程為:----------------4

圓心到直線的距離---------------5

所以,圓上的點到直線的距離的最小值為----------------7

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某次測驗中,有6位同學(xué)的平均成績?yōu)?5分.用xn表示編號為n(n=1,2,…,6)的同學(xué)所得成績,且前5位同學(xué)同學(xué)的成績?nèi)绫恚?

n

1

2

3

4

5

x0

70

76

72

70

72


(1)求第6位同學(xué)的成績x6及這6位同學(xué)成績的標(biāo)準(zhǔn)差s;
(2)若從前5位同學(xué)中,隨機地選2位同學(xué),求恰有1位同學(xué)成績在區(qū)間[68,75)中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】探究函數(shù)的最小值,并確定取得最小值時x的值.列表如下:

x

0.5

1

1.5

1.7

1.9

2

2.1

2.2

2.3

3

4

5

7

y

8.5

5

4.17

4.05

4.005

4

4.005

4.002

4.04

4.3

5

4.8

7.57

請觀察表中y值隨x值變化的特點,完成以下的問題.

函數(shù)在區(qū)間(0,2)上遞減;

函數(shù)在區(qū)間 上遞增.

當(dāng) 時, .

證明:函數(shù)在區(qū)間(0,2)遞減.

思考:函數(shù)時,有最值嗎?是最大值還是最小值?此時x為何值?(直接回答結(jié)果,不需證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)兩條直線的方程分別為x+y+a=0和 x+y+b=0,已知a、b是關(guān)于x的方程x2+x+c=0的兩個實根,且0≤c≤ ,則這兩條直線間距離的最大值和最小值分別為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如右圖所示,已知點的重心,過點作直線與兩邊分別交于兩點,且,則的最小值為 ( )

A. 2 B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列前5項和為50, ,數(shù)列的前項和為 , .

(Ⅰ)求數(shù)列 的通項公式;

(Ⅱ)若數(shù)列滿足, ,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】凸函數(shù)的性質(zhì)定理為:如果函數(shù)f(x)在區(qū)間D上是凸函數(shù),則對于區(qū)間D內(nèi)的任意x1 , x2 , …,xn , 有 ≤f( ),已知函數(shù)y=sinx在區(qū)間(0,π)上是凸函數(shù),則在△ABC中,sinA+sinB+sinC的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電影院共有1000個座位,票價不分等次,根據(jù)影院的經(jīng)營經(jīng)驗,當(dāng)每張票價不超過10元時,票可全售出;當(dāng)每張票價高于10元時,每提高1元,將有30張票不能售出,為了獲得更好的收益,需給影院定一個合適的票價,需符合的基本條件是:①為了方便找零和算賬,票價定為1元的整數(shù)倍;②電影院放一場電影的成本費用支出為5750元,票房的收入必須高于成本支出,用x(元)表示每張票價,用y(元)表示該影院放映一場的凈收入(除去成本費用支出后的收入)
問:
(1)把y表示為x的函數(shù),并求其定義域;
(2)試問在符合基本條件的前提下,票價定為多少時,放映一場的凈收人最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義max{{x,y}= ,設(shè)f(x)=max{ax﹣a,﹣logax}(x∈R+ , a>0,a≠1).若a= ,則f(2)+f( )=;若a>1,則不等式f(x)≥2的解集是

查看答案和解析>>

同步練習(xí)冊答案