已知在直三棱柱ABC—A1B1C1中,AC⊥BC,D為AB的中點(diǎn),AC=BC=BB1.
求證:(1)BC1⊥AB1;
(2)BC1∥平面CA1D.
證明略
如圖所示,以C1為原點(diǎn),C1A1,C1B1,C1C所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系.不妨設(shè)AC=2,由于AC=BC=BB1,則A(2,0,2),B(0,2,2),C(0,0,2),A1(2,0,0),B1(0,2,0),C1(0,0,0),D(1,1,2).
(1)由于=(0,-2,-2),
=(-2,2,-2),
所以·=0-4+4=0,因此⊥,
故⊥.
(2)方法一 取A1C的中點(diǎn)E,連接DE,由于E(1,0,1),
所以=(0,1,1),又=(0,-2,-2),
所以=-·,又因?yàn)镋D和BC1不共線,
所以ED∥BC1,且DE平面CA1D,BC1平面CA1D,
故BC1∥平面CA1D.
方法二 由于=(2,0,-2),=(1,1,0),
若設(shè)=x+y,
則得,解得,
即=-2,
所以,,是共面向量,
又因?yàn)锽C1平面CA1D,因此BC1∥平面CA1D.
方法三 求出平面CA1D的法向量n,證明向量⊥n.
設(shè)n=(a,b,1),由于=(2,0,-2),=(1,1,0)
∴,∴
∴n=(1,-1,1),又∵=(0,-2,-2),
∴n·=2-2=0,∴⊥n,
又∵平面CA1D,∴∥平面CA1D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
5 |
2 |
5 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖南長沙重點(diǎn)中學(xué)高三上學(xué)期第三次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知在直三棱柱ABC-A1B1C1中,AB=4,AC=BC=3,D為AB的中點(diǎn).
(Ⅰ)求異面直線CC1和AB的距離;
(Ⅱ)若AB1⊥A1C,求二面角A1-CD-B1的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
[2012·重慶卷] 已知在直三棱柱ABC-A1B1C1中,AB=4,AC=BC=3,D為AB的中點(diǎn).
(1)求異面直線CC1和AB的距離;
(2)若AB1⊥A1C,求二面角A1-CD-B1的平面角的余弦值.
圖1-3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com