【題目】如圖,在四面體ABCD中,AC6BABC5ADCD3 .

1)求證:ACBD

2)當四面體ABCD的體積最大時,求點A到平面BCD的距離.

【答案】1)見解析(2

【解析】

1)取AC的中點O,連接OBOD,證明AC⊥平面OBD,即可得證;

2)當四面體ABCD的體積最大時,平面DAC⊥平面ABC,利用等體積法求解點到平面距離.

1)證明:

如圖,取AC的中點O,連接OBOD,∵BABC

ACOB ADCD,∴ACOD,又ODOBO,

AC⊥平面OBD,又BD平面OBD,∴ACBD.

2)由題可知,當四面體ABCD的體積最大時,平面DAC⊥平面ABC,∵DOAC,

DO⊥平面ABC,又OB平面ABC,∴DOOB

DADC3,AC6,ABBC5,∴OD3,

OB4,∴DB5,

BC5,

∴在△BCD中,CD邊上的高h

SBCD×CD×h×3×,SABC×AC×OB×6×412.

設(shè)點A到平面BCD的距離為d,∴VABCDVDABC,即SBCD×dSABC×OD

d,∴點A到平面BCD的距離為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】把函數(shù)的圖象向右平移個單位長度,再把所得的函數(shù)圖象上所有點的橫坐標縮短到原來的(縱坐標不變)得到函數(shù)的圖象,關(guān)于的說法有:①函數(shù)的圖象關(guān)于點對稱;②函數(shù)的圖象的一條對稱軸是;③函數(shù)上的最上的最小值為;④函數(shù)上單調(diào)遞增,則以上說法正確的個數(shù)是(

A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)fx)=x22x+1的圖象與函數(shù)gx)=3cosπx的圖象所有交點的橫坐標之和等于(

A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某服裝加工廠為了提高市場競爭力,對其中一臺生產(chǎn)設(shè)備提出了甲、乙兩個改進方案:甲方案是引進一臺新的生產(chǎn)設(shè)備,需一次性投資1000萬元,年生產(chǎn)能力為30萬件;乙方案是將原來的設(shè)備進行升級改造,需一次性投入700萬元,年生產(chǎn)能力為20萬件.根據(jù)市場調(diào)查與預(yù)測,該產(chǎn)品的年銷售量的頻率分布直方圖如圖所示,無論是引進新生產(chǎn)設(shè)備還是改造原有的生產(chǎn)設(shè)備,設(shè)備的使用年限均為6年,該產(chǎn)品的銷售利潤為15/件(不含一次性設(shè)備改進投資費用).

1)根據(jù)年銷售量的頻率分布直方圖,估算年銷量的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

2)將年銷售量落入各組的頻率視為概率,各組的年銷售量用該組區(qū)間的中點值作年銷量的估計值,并假設(shè)每年的銷售量相互獨立.

①根據(jù)頻率分布直方圖估計年銷售利潤不低于270萬元的概率:

②若以該生產(chǎn)設(shè)備6年的凈利潤的期望值作為決策的依據(jù),試判斷該服裝廠應(yīng)選擇哪個方案.6年的凈利潤=6年銷售利潤-設(shè)備改進投資費用)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)-2為自然對數(shù)的底數(shù),).

(1)若曲線在點處的切線與曲線至多有一個公共點時,求的取值范圍;

(2)當時,若函數(shù)有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,將曲線(為參數(shù)) 上任意一點經(jīng)過伸縮變換后得到曲線.以坐標原點為極點,軸的非負半軸為極軸,建立極坐標系,直線的極坐標方程為

1)求直線的普通方程和曲線的直角坐標方程;

2)設(shè)直線與曲線交于兩點,,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線過點,傾斜角為.以原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程

1)寫出直線的參數(shù)方程及曲線的直角坐標方程;

2)若相交于,兩點,為線段的中點,且,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右頂點分別為CD,且過點,P是橢圓上異于CD的任意一點,直線PCPD的斜率之積為

1)求橢圓的方程;

2O為坐標原點,設(shè)直線CP交定直線x = m于點M,m為何值時,為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】生活中人們常用“通五經(jīng)貫六藝”形容一個人才識技藝過人,這里的“六藝”其實源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”. 為弘揚中國傳統(tǒng)文化,某校在周末學生業(yè)余興趣活動中開展了“六藝”知識講座,每藝安排一節(jié),連排六節(jié),則滿足“數(shù)”必須排在前兩節(jié),“禮”和“樂”必須相鄰安排的概率為( )

A.B.C.D.

查看答案和解析>>

同步練習冊答案