分析 由題意可知A,B在橢圓上,$\left\{\begin{array}{l}{9{x}_{1}^{2}+{y}_{1}^{2}=1}\\{9{x}_{2}^{2}+{y}_{2}^{2}=1}\end{array}\right.$,兩式相減可知:$\frac{{y}_{1}+{y}_{2}}{{x}_{1}+{x}_{2}}$•$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-9,由直線OM的斜率kOM=$\frac{{y}_{1}+{y}_{2}}{{x}_{1}+{x}_{2}}$,l的斜率k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$,即可求得直線OM的斜率與l的斜率的乘積.
解答 解:設(shè)A(x1,y1),B(x1,y2),M($\frac{{x}_{1}+{x}_{2}}{2}$,$\frac{{y}_{1}+{y}_{2}}{2}$),
直線OM的斜率kOM=$\frac{{y}_{1}+{y}_{2}}{{x}_{1}+{x}_{2}}$,l的斜率k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$,
$\left\{\begin{array}{l}{9{x}_{1}^{2}+{y}_{1}^{2}=1}\\{9{x}_{2}^{2}+{y}_{2}^{2}=1}\end{array}\right.$,兩式相減可得:9(x1+x2)(x1-x2)+(y1+y2)(y1+y2)=0,
即$\frac{{y}_{1}+{y}_{2}}{{x}_{1}+{x}_{2}}$•$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-9,
∴kOM•k=-9,
故答案為:-9.
點(diǎn)評(píng) 本題考查直線與橢圓的位置關(guān)系,考查直線的斜率公式及點(diǎn)差法的應(yīng)用,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a≤2 | B. | a≥-2 | C. | a≤-2或 a≥2 | D. | -2≤a≤2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若一個(gè)平面內(nèi)有三個(gè)點(diǎn)到另一個(gè)平面的距離都相等,則這兩個(gè)平面平行 | |
B. | 若一條直線與一個(gè)平面內(nèi)兩條直線都垂直,那么這條直線垂直于這個(gè)平面 | |
C. | 若兩個(gè)平面都垂直于第三個(gè)平面,則這兩個(gè)平面平行 | |
D. | 若一條直線與兩個(gè)相交平面都平行,則這條直線與這兩個(gè)平面的交線平行 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2017屆湖南永州市高三高考一模考試數(shù)學(xué)(文)試卷(解析版) 題型:選擇題
已知集合,則集合的子集個(gè)數(shù)為( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com