【題目】已知函數(shù).

1)當(dāng)時(shí),求的單調(diào)區(qū)間;

2)若函數(shù)有兩個(gè)極值點(diǎn),,且,的導(dǎo)函數(shù),設(shè),求的取值范圍,并求取到最小值時(shí)所對(duì)應(yīng)的的值.

【答案】1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為2的取值范圍是;對(duì)應(yīng)的的值為.

【解析】

1)當(dāng)時(shí),求的導(dǎo)數(shù)可得函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個(gè)極值點(diǎn),,且,利用導(dǎo)函數(shù),可得的范圍,再表達(dá),構(gòu)造新函數(shù)可求的取值范圍,從而可求取到最小值時(shí)所對(duì)應(yīng)的的值.

1)函數(shù)

由條件得函數(shù)的定義域:,

當(dāng)時(shí),

所以:,

時(shí),

當(dāng)時(shí),,當(dāng),時(shí),,

則函數(shù)的單調(diào)增區(qū)間為:,單調(diào)遞減區(qū)間為:,;

2)由條件得:,,

由條件得有兩根:,,滿足

,可得:

,可得:

函數(shù)的對(duì)稱軸為,

所以:,

,可得:,

,

,則:,

所以:;

所以:

,,,

,

因?yàn)椋?/span>時(shí),,所以:,上是單調(diào)遞減,在,上單調(diào)遞增,

因?yàn)椋?/span>1,,1),

所以,;

的取值范圍是:,;

,所以有

;

所以當(dāng)取到最小值時(shí)所對(duì)應(yīng)的的值為;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若函數(shù),試討論的單調(diào)性;

2)若,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,且兩種坐標(biāo)系中取相同的長(zhǎng)度單位.

1)求曲線的直角坐標(biāo)方程和的方程化為極坐標(biāo)方程;

2)設(shè),軸交于,兩點(diǎn),且線段的中點(diǎn)為.若射線,交于,兩點(diǎn),求,兩點(diǎn)間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,.

1)當(dāng)時(shí),證明:;

2)設(shè)直線是函數(shù)在點(diǎn)處的切線,若直線也與相切,求正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若,求的極值;

(2)若,都有成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若函數(shù)f(x)在定義域內(nèi)是增函數(shù),求實(shí)數(shù)a的取值范圍;

2)當(dāng)a[1,e)時(shí),求方程的根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某調(diào)查機(jī)構(gòu)對(duì)全國(guó)互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是(

注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.

A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上

B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過(guò)總?cè)藬?shù)的

C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)90后比80前多

D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓)的左焦點(diǎn)為,上一點(diǎn),且軸垂直,,分別為橢圓的右頂點(diǎn)和上頂點(diǎn),且,且的面積是,其中是坐標(biāo)原點(diǎn).

1)求橢圓的方程.

2)若過(guò)點(diǎn)的直線互相垂直,且分別與橢圓交于點(diǎn),,,四點(diǎn),求四邊形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為F1F2,過(guò)點(diǎn)F1的直線與C交于A,B兩點(diǎn).ABF2的周長(zhǎng)為,且橢圓的離心率為.

1)求橢圓C的標(biāo)準(zhǔn)方程:

2)設(shè)點(diǎn)P為橢圓C的下頂點(diǎn),直線PAPBy2分別交于點(diǎn)M,N,當(dāng)|MN|最小時(shí),求直線AB的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案