已知集合 A={x|y=
9-x2
},B={y|y=2x,x>0}時,A∩B=( 。
A、{x|x≥-3}
B、{x|1<x≤3}
C、{x|x>1}
D、∅
考點:指數(shù)函數(shù)的定義、解析式、定義域和值域,交集及其運算
專題:函數(shù)的性質(zhì)及應(yīng)用,集合
分析:求出函數(shù)y=
9-x2
的定義域可得集合A,求出函數(shù)y=2x,x>0的值域,可得集合B,進而結(jié)合集合交集的定義,得到答案.
解答:解:∵集合 A={x|y=
9-x2
}={x|-3≤x≤3},
B={y|y=2x,x>0}={y|y>1},
故A∩B={x|1<x≤3},
故選:B
點評:本題考查的知識點是函數(shù)的定義域和值域,集合的交集運算,是函數(shù)和集合的綜合應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列直線中傾斜角為45°的是( 。
A、y=xB、y=-x
C、x=1D、y=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把函數(shù)f(x)=cos2x-
3
sin2x的圖象向右平移m(m>0)個單位,所得的圖象關(guān)于坐標(biāo)原點對稱,則m的最小值是( 。
A、
π
12
B、
π
6
C、
12
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓的方程為(x-1)(x-2)+(y-2)(y+4)=0,則圓心坐標(biāo)為(  )
A、(1,-1)
B、(
1
2
,-1)
C、(-1,2)
D、(
3
2
,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2-6x=0的圓心坐標(biāo)和半徑分別是(  )
A、(3,0),9
B、(3,0),3
C、(-3,0),9
D、(-3,0),3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若P為二面角M-l-N的面N內(nèi)一點,PB⊥l,B為垂足,A為l上一點,且∠PAB=α,PA與平面M所成角為β,二面角M-l-N的大小為γ,則有( 。
A、sinα=sinβsinγ
B、sinβ=sinαsinγ
C、sinγ=sinαsinβ
D、以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,兩點P1(x1,y1),P2(x2,y2)間的“L-距離”定義為|P1P2|=|x1-x2|+|y1-y2|.則平面內(nèi)與x軸上兩個不同的定點F1,F(xiàn)2的“L-距離”之和等于定值(大于|F1F2|)的點的軌跡可以是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科)若方程x2+y2+ax+2ay+2a2+a-1=0表示的是一個圓,則a 的取值范圍為( 。
A、-2<a<0
B、-2<a<
2
3
C、a<-2
D、-
2
3
<a<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(0,-2)的直線l的傾斜角α滿足sin
α
2
=
1
3
,則l的方程是( 。
A、y=
4
2
7
x+2
B、y=-
4
2
7
x-2
C、y=
4
2
7
x+2
D、y=
4
2
7
x-2

查看答案和解析>>

同步練習(xí)冊答案