7.如果質(zhì)點(diǎn)A按照規(guī)律s=3t2運(yùn)動(dòng),則在t0=3時(shí)的瞬時(shí)速度為(  )
A.12B.16C.18D.27

分析 已知質(zhì)點(diǎn)A按照規(guī)律s=3t2運(yùn)動(dòng),對(duì)其進(jìn)行求導(dǎo),再把t0=3代入求解.

解答 解:∵質(zhì)點(diǎn)A按照規(guī)律s=3t2運(yùn)動(dòng),
∴s′=6t,
當(dāng)t0=3時(shí),瞬時(shí)速度為s′=6×3=18.
故選C.

點(diǎn)評(píng) 此題主要考查導(dǎo)數(shù)與變化率的關(guān)系,此題是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=cosωx(ω>0),其圖象上相鄰的兩條對(duì)稱(chēng)軸之間的距離為$\frac{π}{2}$,
(Ⅰ)求f(x+$\frac{π}{6}$)在區(qū)間[-$\frac{π}{6}$,$\frac{2π}{3}$]上的單調(diào)區(qū)間;
(Ⅱ)若α∈($\frac{5π}{12}$,$\frac{π}{2}$),f(α+$\frac{π}{3}$)=$\frac{1}{3}$,求sin2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{-4{x}^{2},x<0}\\{{x}^{2}-x,x≥0}\end{array}\right.$,若f(a)=-$\frac{1}{4}$,則a=$\frac{1}{4}$或$\frac{1}{2}$,若方程f(x)-b=0有三個(gè)不同的實(shí)根,則實(shí)數(shù)b的取值范圍是(-$\frac{1}{4}$,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)y=f(x)定義在區(qū)間(-3,7)上,其導(dǎo)函數(shù)如圖所示,則函數(shù)y=f(x)在區(qū)間(-3,7)上極小值的個(gè)數(shù)是(  )
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知a,b,c分別為△ABC的內(nèi)角A,B,C的對(duì)邊,且acosC+(c-2b)cosA=0.
(Ⅰ)求A;
(Ⅱ)若a=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知直線(xiàn)l:x+ay-1=0(a∈R)是圓C:x2+y2-4x-2y+1=0的對(duì)稱(chēng)軸,過(guò)點(diǎn)A(-4,a)作圓C的一條切線(xiàn),切點(diǎn)為B,則|AB|=(  )
A.2B.4$\sqrt{2}$C.2$\sqrt{10}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知集合P={x|1≤x≤3},Q={x|(x-1)2≤4},則P∩Q=( 。
A.[-1,3]B.[1,3]C.[1,2]D.(-∞,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.給出下列等式:
(1)$\overrightarrow{a}$•$\overrightarrow{0}$=$\overrightarrow{0}$;
(2)$\overrightarrow{0}$•$\overrightarrow{a}$=$\overrightarrow{0}$;
(3)若$\overrightarrow{a}$,$\overrightarrow$同向共線(xiàn),則$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$|•|$\overrightarrow$|;
(4)$\overrightarrow{a}$≠0,$\overrightarrow$≠0,則$\overrightarrow{a}$•$\overrightarrow$≠0;
(5)$\overrightarrow{a}$•$\overrightarrow$=0,則$\overrightarrow{a}$•$\overrightarrow$中至少有一個(gè)為0;
(6)若$\overrightarrow{a}$,$\overrightarrow$均是單位向量,則$\overrightarrow{a}$2=$\overrightarrow$2
以上成立的是( 。
A.(1)(2)(5)(6)B.(3)(6)C.(2)(3)(4)D.(6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.$(tanx+\frac{1}{tanx}){cos^2}x$=(  )
A.tanxB.sinxC.cosxD.$\frac{1}{tanx}$

查看答案和解析>>

同步練習(xí)冊(cè)答案